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Abstract: In this paper consistency of estimates of linear dynamic systems obtained
by using subspace algorithms under quite general assumptions on the innovations are
derived. The assumptions include i.a. GARCH type of errors as well as E-GARCH.
Also the consistent estimation of the model for the conditional variance is discussed.
A small simulation study shows the potential of subspace algorithms in the context of
GARCH modelling in comparison with the optimization based method implemented

in MATLAB.
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1. INTRODUCTION

The concept of heteroskedastic innovations has
been introduced in the analysis of financial time
series to explain the phenomenon of volatility clus-
tering: Periods of high fluctuations alternate with
periods of low fluctuation, which can be modelled
via introducing a dependence of the conditional
variances of the innovations. As a second property,
GARCH models also helped to explain the ’fat
tails’ often observed in financial time series. The
conditional first two moments build the basis of
the most prominent portfolio selection methods,
which are based on the assumption, that the in-
vestor measures his benefit using expected returns
and his risk using the variance. Thus a model
for the conditional first two moments is the core
of any investment strategy building on these as-
sumptions.

Since the introduction of ARCH models by
(Engle, 1982) a number of different algorithms
for the estimation have been proposed. Most of
these procedures resort to optimization of some
criterion function, such as the likelihood or the
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one step ahead prediction error. It is well known,
that the prediction error approach neglecting the
ARCH property of the errors leads to prelimi-
nary estimates, which are consistent but not ef-
ficient in the presence of ARCH effects (cf. e.g.
Gourieroux, 1997). Also the asymptotic properties
of maximum likelihood estimates in the ARMA
case are known (cf. e.g. Gourieroux, 1997, for a
discussion). However, in all situations, where the
optimization of the criterion function is performed
using standard numerical methods, the question
of initial estimates is virulent. Especially in a
multivariate context a good initial estimate is
needed in order to achieve a low probability of
being trapped in a local minimum. In the conven-
tional homoskedastic case, where the conditional
variance of the innovations is constant, it has been
shown in (Bauer, 2000) that a particular subspace
algorithm sometimes called CCA, which has been
proposed by (Larimore, 1983), asymptotically is
equivalent to a generalized pseudo maximum like-
lihood estimate, i.e. optimizing the Gaussian like-
lihood. Here equivalent means, that square root
sample size times the difference of the two esti-
mates converges to zero almost sure, so that the
estimates tend to the same asymptotic distribu-
tion. In this paper it is shown, that the subspace



estimates possess some robustness properties with
respect to the assumptions on the innovations.

2. MODEL SET AND ASSUMPTIONS

This paper deals with finite dimensional, discrete
time, time invariant, linear, dynamical state space
systems of the form

Ty = Az + Kegy, ye = Cxe + &4 (1)
where y; denotes the s-dimensional observed out-
put, z; the n-dimensional state and &; the s-
dimensional innovation sequence. A € R**" K €
R"*¢ C € R**" are real matrices. Note, that it
is not assumed, that y; is univariate. Throughout
the paper it is assumed, that the system is stable,
i.e. all the eigenvalues of A are assumed to lie
within the open unit disc, and strictly minimum-
phase, i.e. all the eigenvalues if A — KC are as-
sumed to lie within the unit circle.

It is well known (cf. e.g. Hannan and Deistler,
1988) that state space models and ARMA models
are just two representations of the same mathe-
matical object, namely the transfer function: It is
easy to verify (using some mild assumptions on
the noise sequence £;) that one solution to the
difference equation given above is of the form

(o]
w=e+y K(er;

i=1
where K(j) = CAI7'K,j > 0 and the infinite
sum corresponds to a.s. convergence (or limit
in mean square, according to the assumptions
imposed upon g;). The transfer function k(z),
where 2 denotes the backward shift operator, then
is defined as k(2) = I + 2C(I — zA)"1K. Further
let M (n) denote the set of all transfer functions of
McMillan degree equal to n fulfilling the stability
and the strict minimumphase assumption. k(2) €
M (n) is a rational function in z seen as a complex
variable. Therefore the transfer function has a
representation as an ARMA system according to
k(z) = a '(2)b(z). A more detailed discussion
on the relation between ARMA and state space
systems can be found in (Hannan and Deistler,
1988).

The solution ¥; as given above is stationary,
if the noise & is a stationary sequence. This
statement holds both in the weak sense and the
strict stationary setting. Throughout this paper
it will always be assumed, that €; is a martingale
difference sequence with respect to the sequence
of increasing sigma fields 7, i.e. E{e¢|F;—1} = 0.
Furthermore it is assumed, that &; is ergodic and
of finite fourth moment, i.e. Esf; < 0o, where the
notation indicates the i-th component of &;. It is
also assumed, that limg_, o, E{e:e}|Fe—x} = = =

Ez;; a.s. This property is sometimes referred to
as linear regularity.

3. SUBSPACE ALGORITHMS

The subspace algorithm investigated in this paper
is the CCA method proposed by (Larimore, 1983).
Up to now a great number of results exist only
for the case, where the innovations also fulfill
E{etei|Fi—1} = I, i.e. where no heteroskedasty
is present. For the CCA case consistency has been
shown in (Deistler et al., 1995), asymptotic nor-
mality in (Bauer et aol., 1999) and asymptotic
equivalence to pseudo maximum likelihood esti-
mation in (Bauer, 2000). Especially the last re-
sult seems to be valuable, since it shows, that
the computationally advantageous subspace al-
gorithms are a very good substitute for pseudo
maximum likelihood estimation. We also note,
that in (Bauer and Wagner, 2001) it is shown,
that an adaptation of the algorithm is able to
produce (weakly) consistent estimates also in the
case of cointegrated processes, where also some
tests for the number of cointegrating relations are
presented. It is the aim of the present paper to
show, that the consistency property of the sub-
space algorithm holds for an extended range of in-
novation sequences. The asymptotic distribution
is a matter of future research.

The CCA algorithm builds on the properties
of the state. In the following we will only
give a brief outline. For a more detailed de-
scription, also of different subspace algorithms
cf. e.g. (Bauer, 1998). Fix two integers f and
D- Denoting y't—,; = [yi—layi—za"'ayi—p]l and
Y = Wt Yi41 -1 Yty p—1]' We obtain the follow-
ing equation:

Yt',‘} = O0sK,Yy, + Os(A - KC)Pxs_p + Nt‘t'f(2)

where Nt'!' ; summarizes the effects of the fu-
ture of the noise, which is orthogonal to the
two other terms due to the assumptions on ;.
Further O; = [C',A'C',---,(AT"YCTY, Kp =
[K,(A- KC)K, ---,(A - KC)P~1K]. Finally let
{as, b)) = T71 E;T:_pﬁ_l ab,. Neglecting the second
term in (2), since (A — KC)?P tends to zero for
p — 00, CCA obtains estimates of the system in
the following three steps:

¢ Estimate 0K, by LS regression in (2) as
Bro = (Vi Yip) (Velps Yep) ™
e B4 p will be of full rank in general, whereas
0K, is of rank n, where n denotes the
system order. Thus approximate
(Y Y 2B (Yo Y /2 = USV!
=UpE,.V, + R,



to obtain estimates Oy = (Y}, ¥;},)1/20, 5,
and K, = V{Y;,,Y,,)" /2. Here USV"
denotes the SVD of

(Yt-:fa },t-,'-f>_1/23f1p(y;,_pi },t,_p)l/2

Thus e.g. 3 is the diagonal matrix containing
the singular values ordered in decreasing size
as diagonal entries. U, € Rf?*" V,, € Rp2*n
and £, € R**" correspond to the submatri-
ces obtained by neglecting the singular values
numbered n + 1 and higher. Therefore in this
step the order is specified.

e Given the estimate /X, from the second
step the state is estimated as #; = ICA,,Yt,_p
and the system matrices are obtained using
least squares regressions in the system equa-
tions (1), where the estimated state takes the
place of the state.

Estimation of the order can be performed using
the information contained in the estimated sin-
gular values in a number of different ways (for a
discussion see Bauer, 1998, Chapter 5). Here we
will deal with the criterion SVC. Let

SVCO(n) =62, + CT;(")

where d(n) = 2ns denotes the number of pa-
rameters and Cr > 0,Cr/T — 0 denotes a
penalty term. Here &; denotes the estimated sin-
gular values ordered decreasing in size. In the
homoskedastic case it is known, that a penalty
such that Cr/(fplogT) — oo leads to al-
most sure (a.s.) consistent estimates of the or-
der i = argminSVC(n),0 < n < Hr,Hr =
O((logT)?%),a < 0.

4. RESULTS

The key to the results in this section lies in the
uniform convergence of the estimated covariance
sequence. The conditions in Theorem 5.3.2. of
(Hannan and Deistler, 1988) require, that in order
for the sequence of covariance estimates to con-
verge uniformly of order O(Q7) the noise has to
be homoskedastic. Here gr = O(fr) means that
there exists a constant M, such that gr/fr < M
a.s. and Qr = +/loglogT/T. However, equation
(5.3.7.) in the same book provides the result, that
if the limiting covariance sequence is replaced
with a sequence, where the innovation variance
% is replaced with T-1 3°7_, &€, the same results
holds under weaker assumptions. This enables the
results in the next theorem:

Theorem 1. Let the process {y:} be generated by
a stable, strictly minimumphase system k(z) €
M(n), where the innovation process is an er-
godic, strictly stationary martingale difference se-
quence satisfying E{e¢|Fi—1} = 0,Eef; < o

and limg o0 E{g16;|Fi—t} = T = Eesey. as. Let
(4,K,C) denote the estimates obtained via the
CCA subspace algorithm using the true order n for
the estimation, which have been transformed to
the corresponding echelon canonical form. Then
the following statements hold:

i) I+ 20 — 2zA)"'K — k(2) as. for each
fixed z = exp(iw), if f > n,p = p(T) -
oo, max{ f,p} = O((logT)*),a < co. That
is, the transfer function is estimated consis-
tently.

ii) Let (Aq, Ko,Co) denote the representation
of the system in the echelon canonical form.
Then for k(z) in the generic neighbourhood
of the echelon canonical form and if p >
—dlogT/(2log po),d > 1

max{[| A—Aoll, | K— Ko}, [|C-Coll} = O(Qr)

Here 0 < pg < 1 denotes the maximal
modulus of the eigenvalues of A9 — KqCp.

iii) The order estimate 7 obtained by minimizing
the SVC criterion is strongly consistent, i.e.
i = n a.s., for Cr/(fplogT) = .

The three parts of the theorem state that with
regard to consistency there is no major difference
between the homoskedastic and the heteroskedas-
tic case, as long as stationarity is preserved: The
subspace estimates still are consistent, the estima-
tion error can be bounded as in the homoskedastic
case. Note that the result ii) has the form of a law
of the iterated logarithm, except that the constant
is not evaluated exactly. This result is only given
for the generic neighbourhood of the echelon form,
however, using overlapping forms (see e.g. Hannan
and Deistler, 1988, Chapter 2) one can show,
that an equivalent error bound is indeed valid for
all ¥ € M(n). The last result shows, that also
the order estimation can be performed as in the
homoskedastic case. This essentially means, that
one can use the same code as in the homoskedastic
case for the identification irrespective if the sys-
tem is homo- or heteroskedastic. The derivation of
the asymptotic distribution and the investigation
of the comparison with prediction error methods
is left as a topic of future research.

The theorem imposes an order of convergence for
the integer p as a function of the sample size,
which is only needed for the derivation of the
error bound. This order of convergence includes
system dependent quantities and thus might be
seen as useless in practice. However, Theorem
6.6.3 in (Hannan and Deistler, 1988) shows, that
if p is chosen as |dfaic]| for d > 1, where |z
denotes the largest integer smaller than z and
where parc is chosen as the order estimate of
a long autoregression for approximating y, using
AIC, then p fulfills the assumption of part ii) a.s.



for large 7.2 Thus an algorithm using this choice
of the integer p will lead to consistent estimates,
where also the error bound on the estimation error
holds.

In comparison to the homoskedastic case the theo-
rem leaves out two important results: The asymp-
totic distribution of the estimates is not analyzed
and secondly the consistency result should also be
extended to the unit root case. Both questions are
topics of future research.

4.1 ARCH(p) innovations

(Engle, 1982) introduced the class of ARCH(p)
models, where the conditional variance h; of the
univariate innovations £; is modelled as a linear
function of the last p squares of the innovations:

P
he=c+Y ajel;

i=1

where &; conditional on F;—1, the sigma algebra
spanned by {€¢—1,£¢—2, -}, is identically Gaus-
sian distributed with mean zero and variance h;.
Here 0 < aj,¢ > 0 is assumed. In order for
the process to be strictly stationary with finite
variance it is assumed that 3_7_; a; < 1. It follows
from (Bougerol and Picard, 1992) that in this
situation the process &; is ergodic. Furthermore
it is assumed for ¢ being equal to the matrix
with typical element +;; = a;y; + a;—;, where
a; = 0,j ¢ {1,---,p} that 3(a1,---,a,)(I —
) a1, --,ap)' < 1. This condition is suffi-
cient for the existence of fourth moments (see e.g.
Gourieroux, 1997, Exercise 3.4). Thus the sys-
tem estimates obtained using subspace methods
are consistent. The assumption on Gaussianity of
€¢|F¢—1 is not necessary and can be replaced by
other assumptions, which imply the existence of
the fourth moment of the process &;.

iFrom the discussion given above it follows, that
a regression of £7 onto [1,£7 ,,---,€;_,] results
in consistent estimates of the model for the con-
ditional variance. This follows from the finiteness
of the fourth moment, the strict stationarity and
ergodicity of £, and the consistency of &; for &;.

4.2 GARCH(p,q) innovations

(Bollerslev, 1986) extended the ARCH(p) spec-
ification to also include MA terms, leading to
GARCH(p,q) systems: Let the conditional vari-
ance be denoted as hy = E{e?|F;_,}, then the
model assumes that

2 This does not hold for AR(p) systems. In this case po = 0
and farc stays bounded. However, all results remain true.

p q
he =c+ Zajef_j + Z bjht_j
j=1 j=1

where again ¢ > 0,a; > 0,b; > 0. (Bougerol and
Picard, 1992) show, that the process &; is strictly
stationary and ergodic, if h; 1/ 2¢, is identically
standard normally distributed and if 3°%_, a; +
S°9_, b;j < 1. In this case also the second moments
exist and the process is also wide sense stationary.
It remains to find a bound for the fourth moment:
Conditions for this to hold are fairly complicated
and can be found in (He and Terdsvirta, 1999).
Thus in this case the result above shows the
consistency of the transfer function estimates.
Therefore also the estimated residuals are consis-
tent. The estimation of the model for the innova-
tions leads again to an ARMA model with het-
eroskedastic innovations. Thus in order to apply
the results in this paper, the existence of an eighth
moment has to be assumed: Although it follows
from (Hannan and Deistler, 1988) that also in this
case finite fourth moments are sufficient to achieve
a uniform convergence of the sample covariances,
no bound on the order of convergence can be
given and thus the arguments given above fail for
p — . Holding f and p fixed leads to consistent
estimates in the sense, that the estimated system
matrices converge to some constants a.s., but the
estimated system will be asymptotically biased,
where the bias depends on the magnitude of pf.

4.3 E-GARCH processes

As a final example consider the exponential
GARCH models considered in (Nelson, 1991): In
order to guarantee positivity of the conditional
variances the following model has been intro-
duced:

[o ]
loghe = ot + _ Brg(ze—k)

i=1
Here ¢; = zth:/ 2, where 2; is assumed to be
i.i.d. with mean zero and variance unity and oy
is a deterministic sequence e.g. constant. The
function ¢ is assumed to be of the lin-lin type:
9(2) = 6z + v(]z| — E|z|) Further the distribution
of z; is assumed to be of the GED type with
tail thickness parameter v > 1. Under these
assumptions it follows that exp(—a;)e; is strictly
stationary and ergodic with finite moments of all
orders. Furthermore E{e?|F;_x} — o? as. for
k — oo. Thus the assumptions of Theorem 1
are fulfilled and the subspace estimates are a.s.
consistent.

5. SIMULATIONS

In this section a simple simulation study compares
the properties of the subspace estimates to the



estimates obtained by using a likelihood approach.
The procedure, which serves as a benchmark, is
the one provided in the MATLAB toolbox. The
investigated properties are the accuracy of the
estimates and the computation times as measured
by the MATLAB function profile. It should be
noted, that both the ML procedure as well as
the subspace algorithm have not been trimmed
to have minimum computations and there seems
to be much potential of improving the subspace
algorithms, but on the other hand also the ML
approach uses some consistency checks on the
data, which increase the computations as well.

The system we will use is an ARMA model with
GARCH(1,1) innovations and thus very simple.
The specification in full detail is as follows:

Yt = O'Syt—l +e¢ + 0-35t—1
hy=0.3he—1 + &7 +0.267_; + 1

The conditional distribution of the innovations is
Gaussian. The processes are generated using the
MATLAB function garchsim. For each sample size
T = 200,T = 500,7 = 1000 and T = 2000 a
total of 1000 time series have been generated and
the system estimated using the function garchfit
and the correct specification. Also the subspace
procedure is used with f = p = 2pasc, where
Parc denotes the lag length selected by the AIC
criterion.

The summary statistics of the estimates can be
seen in Table 2 for the ML procedure and in
Table 3 for the subspace procedure: The better
accuracy of the ML method is clearly visible, how-
ever the difference does not seem to be striking for
the ARMA model for the output series. Especially
for T = 2000 the difference in accuracy is mi-
nor, except for the occurrence of some outliers in
the subspace case. The estimates for the variance
model achieved using subspace procedures how-
ever, are not very reliable, and this is in particular
true for the estimated zeros of the variance model.
Even at sample size T = 2000 there seems to be
a downward bias in the estimates. These facts are
also visible in Figure 1: The upper plot here shows
a scatter plot of the estimated autoregressive pa-
rameters, the lower plot shows the scatter plot for
the zero of the estimated variance models, both
for sample size T' = 2000. The upper plot shows a
high correlation between the estimates, whereas
the lower plot indicates a number of aberrant
estimates for the subspace algorithms.

Also in a number of cases some outliers occur,
which inflate the estimated variability. This is
the reason for using robust estimates of the root
mean square and the mean. It should also be
mentioned, that in a number of cases the MATLAB
routine garchfit crashed, giving no resulting

Autoregressive Parameler
T T T

subspace estmates

~04
[

Fig. 1. Upper plot: estimates of the autoregres-
sive parameter of the conditional mean model
estimated using garchfit (x-axis) versus
the estimates obtained using the subspace
method (y-axis) for sample size T = 2000 in
1000 trials. Lower plot: analogous picture for
the estimated zero of the variance model.

Method | T=200 | T=500 | T=1000 | T = 2000
garchfit 3.52 3.77 5.17 6.38
subspace 0.61 0.65 0.74 0.89
Quotient 5.77 5.8 7.0 7.2

Table 1. Mean computation time per
identification experiment in seconds for
the various sample sizes.

system at all. These cases have been taken out
of the simulations, leading to some bias in the
comparison.

Finally the computational time can be analyzed,
which clearly shows a huge advantage for the (not
even optimized) subspace methods (see Table 1).
It is clearly visible, that the subspace method re-
quires only a fraction of computations, while still
providing reasonable estimates. The main con-
clusion of the small simulation study is that the
subspace algorithms provide relatively good initial
estimates for a subsequent pseudo ML approach
in terms of the asymptotic statistical properties,
while still keeping the amount of computations
required at a low level.




6. CONCLUSIONS

In this paper the asymptotic properties of es-
timates of state space models using subspace
methods with heteroskedastic innovations are in-
vestigated. Consistency is shown and a bound
on the obtainable order of consistency is pro-
vided. The result is stated in a general fashion
such that it applies for a wide range of models
for the heteroskedasticity, including ARCH(p),
GARCH(p,q) and E-GARCH(p,q) models. This
shows, that the standard subspace algorithms pro-
vide consistent estimates of the system also in
situations, where the model for the conditional
variance might be doubted. This of course is due
to the fact, that the subspace algorithms are based
mainly on regression techniques, which are robust
with respect to the variance structure of the in-
novations. With respect to the estimation of the
model for the conditional variances consistency
can be achieved in the ARCH(p) case, whereas
no comparable results are given for the general
case. A simulation study compares the estimates
with the estimates obtained using the GARCH
toolbox implemented in MATLAB both with respect
to accuracy and computation time. The loss of
efficiency in the estimation of the model for the
heteroskedasticity is clearly visible, however, the
accuracy of the model for the conditional mean
seems to be acceptable. Finally the main power of
subspace algorithms, namely their low computa-
tional load is demonstrated in comparison with
a GARCH routine implemented in the MATLAB
GARCH toolbox.
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