
PREDICTIVE FUNCTIONAL CONTROL: MORE

THAN ONE WA Y TO PRESTABILISE

J.A. Rossiter
�

� Dept. of Automatic Control & Systems Engineering, University

of SheÆeld, Mappin Street, SheÆeld, S1 3JD, email:

J.A.Rossiter@sheffield.ac. uk, Tel. 44 114 2225685

Abstract: It is possible to prestabilise the predictions used within Predictive Func-
tional Control in order to increase the likelihood of a stabilising con trol design.
How ev er, the minimal order approach to prestabilisation is not always a good basis
for con trol design. This w eakness is investigated and some non-minimal forms of
prestabilisation are developed which are a much better basis for control.

Keywords: Predictive functional control, stabilit y, prestabilisation, performance

1. INTRODUCTION

Predictive con trol is an in tuitiv econtrol design
method whereby one predicts the expected e�ects
of di�ering con trol trajectories and then selects
the trajectory which causes the most desirable
expected behaviour. Suc h a procedure �ts w ell
with human based control and can lead to easier
design. For instance such questions as over what
horizon should one predict behaviour, what sort
of future control trajectories should one use, can
all be answered fairly easily. In academia there has
been a tendency to link these decisions to optimal
control (Scokaert et al., 1998; Clarke et al., 1987)
as this enables one to use many w ell understood
theoretical results. In particular apriori analysis
of stabilit y is straigh tforward e.g. (Kouvaritakis
et al., 1992; Rawlings et al., 1993; Rossiter et

al., 1998). How ev er,the link to optimal con trol
tak es the tec hnique further aw ay from engineering
intuition which was k ey in early industrial varian ts
of MPC (predictive con trol), e.g. (Cutler et al.,
1980; Ric halet et al., 1978). Here w e focus on
one commerical product (Ric haletet al., 1978)
Predictive F unctional Control (PFC) which has
sought to relate con troller design as muc h as
possible to well understood engineering concepts.
This simpli�cation is at the expense of some

potential optimality and pow er, nev ertheless it
has had extensive success in practice.

There is ho w ev ersome classes of problem for
which PFC will often fail, that is unstable open-
loop processes with factors (s�a)=(s�ra); r > 1
and multiv ariable processes. Here we concentrate
on the former of these. Recent w ork (Rossiter,
2001; Rossiter, 2001b) has shown that it is possi-
ble to transcribe some of the work on guaranteed
stabilit y e.g. (Kouvaritakis et al., 1992; Rossiter
et al., 1996) using prestabilisation before optimi-
sation. Using prestabilised predictions one is able
to stabilise processes that previously could not
be handled with PFC and incorporate constraint
handling and feasibility issues (Rossiter, 2002).

Suprisingly, although prestabilisation gives a good
assurance of stabilit y with simple tuning guide-
lines, it does not always give good performance.
In fact (Rossiter, 2001c) at times a PFC algo-
rithm based on unstable predictions gave better
performance. The diÆculty relates back to the
prediction class adopted for doing prestabilisa-
tion. The method had follow ed common practice
in predictive con trolof using changes in con trol
as the degrees of freedom, ho w ever this may be
ine�ectual if the number of changes allow ed is too
small. In PFC the number of d.o.f. maybe just one
which is insuÆcient for good performance in some

Copyright © 2002 IFAC
15th Triennial World Congress, Barcelona, Spain



cases. The aim of this paper is develop alternative
parameterisations of stabilising predictions which
allow for good performance with just one d.o.f..

Here a brief summary of PFC algorithms based
on prestabilised and non prestabilised predictions
is given. A new parameterisation of prestabilised
predictions is developed and a variety of examples
will be used to contrast new and old approaches.

2. BACKGROUND

2.1 The PFC algorithm

We adopt the notation of y; u; r for process
outputs, inputs and setpoint respectively. z�1 is
the unit delay operator (i.e. z�1yk = yk�1), yk
is the value of y at the kth sample and yk+ijk is
the predicted value of yk+i computed at sample
k. PFC makes use of a system model to generate
predictions of the process behaviour in terms of
the current state and future inputs. Although
more involved variants exist 1 , to avoid over com-
plicating this brief paper we concentrate on a PFC
variant with just one d.o.f.. In PFC one chooses:
(i) a lag (that is the time constant, say TPFC and
(ii) a single prediction horizon say Th (denoted the
coincidence horizon). The control move is selected
to cause the predicted output to coincide with
the response of a target 1st order lag Th seconds
ahead. Let Th seconds correspond to ny samples
(i.e nyT = Th, T the sample period), then the
online computation reduces to solving:

yk+ny jk = yk + (rk+ny � yk)(1� e
�

T
h

T
PFC ) (1)

2.2 Independent models

In PFC it is usual to use an IM (independent
model) (Garcia et al., 1982) for prediction. This
can give signi�cant improvements in sensitivity to
measurement noise over the alternative of state
realignment (Rossiter et al., 2001). Also it is
equivalent to a FIR model which is favoured in
industry. The norm is to simulate the IM in
parallel with the process, using the same inputs
u. An IM is intended to represent the process as
closely as possible so that it has matching inputs
and outputs. If ym is the output of the IM, in
general, due to uncertainty, y 6= ym.

With unstable processes a parallel simulation can-
not work because the same input will not stabilise
the IM and an uncertain plant. A typical solution
e.g. (Richalet, ) is to decompose the model into
two parts (�gures 1,2) where for a process G:

G = (I +M2)
�1
M1 =

n

d
(2)

1 To cater for setpoints with high order dynamics

Fig. 1. Independent model used for prediction

Fig. 2. Independent model for simulation

Both M1 and M2 are stable. Figure 1 is used for
prediction and �gure 2 for online simulation. A
convenient decomposition in the SISO case is:

G =
n+n�

d+d�
; M1 =

n+

d�
; M2 =

b2

n�
; b2 = n��d+

(3)
n+; d+ are factors containing unstable roots.

Note: For ease of notation any process dead-time
is assumed to be absorbed into n and n+.

2.3 Prestabilisation and prediction

Using unstable predictions as a basis for a pre-
dictive control law design is unwise (Rossiter et

al., 1998). Even if the behaviour is predicted to
be good within the horizon, it would be divergent
thereafter and hence one can not make recursive
feasibility claims (Kouvaritakis et al., 1996) and
instability is almost inevitable due to constraints.
There is a need therefore to parameterise the
degrees of freedom such that the predictions are
stable. Here (Rossiter, 2001) we use the basic
philosophy of (Rossiter et al., 1996), that is place
structure into the predicted future input trajec-
tory to bring the unstable dynamics under control.

2.3.1. Notation De�ne vectors of future (arrow
right) and past values (arrow left)

�u
!
=

2
6664
�uk

�uk+1

...
�uk+nu�1

3
7775 ; y

!
=

2
6664

yk+1

yk+2

...
yk+ny

3
7775

�u
 
=

2
64
�uk�1

�uk�2

...

3
75 ; y

 
=

2
64
yk

yk�1

...

3
75

The vector of future values can be any length,
but ny corresponds to the coincidence horizon and
nu the input horizon. Using the Toeplitz/Hankel



notation to compute predictions, for a given poly-
nomial n(z) = n0 + n1z

�1 + : : :, de�ne

Cn =

2
6666664

n0 0 0 : : :

n1 n0 0 : : :

n2 n1 n0 : : :

...
...

...
...

nm nm�1 nm�2

...

3
7777775

(4)

Hn =

2
66666664

n1 : : : nm�1 nm

n2 : : : nm 0
...

...
...

...

nm 0
... 0

...
...

...
...

3
77777775

Also de�ne �n as a tall and thin submatrix of Cn

so that [1; z�1; z�2:::]�nb = n(z)[1; z�1; :::]b and
note that dimensions are exible to �t the context.

2.3.2. Open-loop predictions Set up consistency
conditions around M1 and M2 at each future
sample and solve as simultaneous equations. The
predictions are given by (Rossiter, 2001):

y
!
= H�u

!
+Kuu

 
+Kww

 
+Ky y

 
+Kz z

 
(5)

where L is a vector of ones, � = 1� z
�1 and

P = C
�1

d
�

C
�1

�
C
�1

d+
; H = P�n

Ku = PC�(CnL+ Cn
�

Hn+)
Kw = �PC�(Cn

�

Hd
�

+ Cd
�

Cb2L)� L

Ky = PC�Cd
�

(Cb2L+Hb2) + L

Kz = �PC�Cd
�

(Cb2L+Hn
�

)� L

2.3.3. Prestabilised predictions Parameterisa-
tion (Rossiter, 2001) of future inputs to stabilise
the predictions of (5) reduces to the constraint
that �u

!
be selected such that

P
�1 y
!
= �d+ (6)

with  stable. With the minimal order �u
!

con-

dition (6) can be solved analytically via a suit-
able diophantine equation, (Rossiter, 2001). The
resulting predictions take the form

�
�u
!

y
!

�
=

�
Cu Cw Cy Cz

Cyu Cyw Cyy Cyz

�
2
6664
u
 

w
 

y
 

z
 

3
7775+

�
�d+
H1

�
c
!

(7)
where H1 = [C�Cd

�

]�1�n.

Remark 2.1. Let r be the number of unstable
poles, then with a minimal order solution for �u

!
,

the matrices Cu; Cw; Cy; Cz will have at most r

non-zero rows, the �rst r rows. Also, for one d.o.f.
c
!
= ck, �d+ will have r + 1 rows.

2.4 The PFC Algorithm

Here we give the PFC algorithms (solution of
equations (1)) based on open-loop and presta-
bilised predictions. De�ne the the variable

	 = e
�

T

T
PFC ; 	ny = e

�
T
h

T
PFC (8)

and de�ne eTny to be the n
th
y standard basis vector.

Algorithm 2.1. Open-loop predictions: Assume �u
!
=

�uk and substitute predictions (5,8) into (1):

yk+nyjk = e
T
ny
[H�u

!
+Kuu

 
+Kww

 
+Ky y

 
+Kz z

 
]

= (1�	ny )rk+ny +	nyyk

) �uk = Prrk+ny � Puu
 
� Pww

 
� Py y

 
� Pz z

 

(9)
g = (eTnyH)�1; Pu = �gKu; Pw = �gKw; Py =

[	ny ; 0; :::]� gKy; Pz = �gKz; Pr = g(1�	ny ).

Algorithm 2.2. Prestabilised predictions: Assume
c
!
= ck and substituting (7, 8) into (1) implies

yk+ny jk = e
T
ny
[H1ck + Cyuu

 
+ Cyww

 
+ Cyy y

 
+ Cyz z

 
]

= (1�	ny)rk+ny +	nyyk

) e
T
ny
H1ck = rk+ny (1�	ny ) + yk	

ny

�e
T
ny
[Cyuu

 
+ Cyww

 
+ Cyy y

 
+ Cyz z

 
]

) �uk = Prrk+ny � Puu
 
� Pww

 
� Py y

 
� Pz z

 

(10)
where g = (eTnyH1)

�1
; h = e

T
1 �d+ ; Pu =

hge
T
ny
Cyu�e

T
1Ku; Pw = hge

T
ny
Cyw�e

T
1Kw; Py =

hge
T
ny
Cyy � e

T
1Ky; Pz = hge

T
ny
Cyz � e

T
1Kz.

3. THE WEAKNESS OF PRESTABILISATION

Although (Rossiter, 2001c) prestabilisation in-
creases the likelihood of a stable closed-loop, the
resulting control law may give poor performance.
Next we discuss what causes this poor perfor-
mance and suggest a means of overcoming it.

3.1 Recursive feasibility and the tail

One needs to understand how stability can be
established for a predictive control algorithm.
Apriori proofs e.g. (Kouvaritakis et al., 1992),
(Rawlings et al., 1993) often use the concept of
the tail. Let the control trajectory at time k be

�u
!
= [�uk;�uk+1jk;�k+2jk; :::]

T (11)

Now at the following sampling instant, the unused
part (all except �uk) can be described as the tail:

the tail = [�uk+1jk;�k+2jk; :::]
T (12)

A suÆcient condition for many Lyapunov based
apriori stability proofs (assuming convergence of
the predictions) is that the tail is in the class of
predictions allowed at the new sampling instant,
for the nominal case e.g. (Kouvaritakis et al.,



1992; Scokaert et al., 1998) as then one can always
choose a control trajectory (i.e. the tail) such that
predicted performance is not worse than at the
previous sampling instant. With new d.o.f. one
should be able to improve predicted performance.

3.2 Prestabilised PFC and the tail

The prestabilised predictions (Rossiter, 2001) of
(7) have the property that the predictions now,
include the tail (by setting ck = 0). This can be
deduced (see remark 2.1) as setting ck = 0 gives
the minimal order solution for �u

!
that ensures

stable prediction. When ck 6= 0 the solution order
is augmented by one; the extra order allowing the
degrees of freedom in the predictions. The tail is
one order less than (7) and therefore must coincide
with the minimal order solution.

Herein however lies the weakness of predictions
(7). The basis is a minimal order control trajec-
tory that stabilises the process. Add onto this a
desired set point and a large coincidence hori-
zon 2 then the PFC algorithm �nds a minimal
order trajectory to stabilise the error dynamics.
In essence this becomes equivalent to dead-beat
control of the unstable dynamics. In some cases
such a dead-beat action will be too agressive.
Moroever, the control performance potential is
very much linked to the prediction class used,
so no amount of tuning with 	; ny will remove
this problem. The examples section will illustrate
these comments. It should be noted that in con-
ventional predictive control with prestabilised pre-
dictions e.g. (Kouvaritakis et al., 1992; Rawlings
et al., 1993), overtuning (dead-beat behaviour) is
avoided by allowing more degrees of freedom.

4. IMPROVING PRESTABILISATION

The presence of the tail in the prediction class
is essential for straightforward stability analysis.
However, using minimal order predictions with
this property may give rather agressive control. In
practice, one expects the closed-loop responses to
be high order and smooth. In consequence when
de�ning a prediction class for predictive control
e.g. (Kouvaritakis et al., 1998), (Scokaert et al.,
1998), (Rossiter et al., 1996) one aims to ensure
stability but also smoothness. In other words one
uses higher order stabilising solutions such as
the optimal predicted closed-loop performance.
It is still straightforward to include the tail in
a higher order prediction class (e.g. (Scokaert
et al., 1998; Kouvaritakis et al., 1998)) and to
restrict the number of degrees of freedom while
maintaining the bene�ts.

2 The work in (Rossiter, 2001c) indicated a need for large

coincidence horizons with prestabilised predictions

The diÆculty within PFC is that we do not
want to fall back on optimal control results as
in conventional MPC and hence it is not so
straightforward to compute an ideal closed-loop
response which can be used as a base. Here we
propose an alternative approach.

4.1 Stabilising prediction classes

First, to maximise the likelihood of closed-loop
stability, ensure the prediction class is param-
eterised so that the NDOF (no d.o.f.) solution
contains the tail. Let all stabilising future input
trajectories be parameterised in general terms as:

�u
!k

= Mvk + �f c
!
=

2
64

�uk

�uk+1jk

...

3
75 (13)

where notionally M; �f have an in�nite number
of rows, f contains a factor d+ and c

!
contains

degrees of freedom (here c
!
= ck). Inclusion of the

tail in �u
!k+1

with ck+1 = 0 implies

�u
!k+1

= Mvk+1 =

2
64
�uk+1jk+1

�uk+2jk+1

...

3
75 =

2
64
�uk+1jk

�uk+2jk

...

3
75

(14)
It is clear therefore that M; f must be de�ned
in a mutually compatible way (for instance they
must share common poles) to ensure (14) can
hold. For instance the part of �u

!k
depending on

f at sampling instant k must appear through the
term Mvk+1 at the next sampling instant (even
though in principle for the prediction class (13) f
can be any function with a factor d+ and M can
be de�ned based on any stabilising trajectories).

4.2 De�nition of a prediction class

Here we select a prediction class which is compati-
ble with the underlying need in PFC for simplicity
and without direct links to optimal control. Other
prediction classes do exist and are the subject of
ongoing research. The key desire is to choose a
trajectory class with three properties:

� Stabilising
� Smooth (transfer function, not polynomial)
� The degrees of freedom can be introduced
while allowing the tail in the NDOF solution.

The second of these requirements implies poles
in the prediction class; an `optimal' choice of
these is ongoing research, however a good default
solution is known to be the inverse of the unstable
poles. Hence de�ne d̂+ with roots p such that
d+(1=p) = 0. Consider prediction class (5), this
can be represented in transfer function form as

y
!
(z) =

n(z)�u
!
+ [1; z�1; :::]Kv

d+d��
(15)



K = P
�1[Ku;Kw;Ky;Kz]; v = [u

 

T
; w
 

T
; y
 

T
; z
 

T ]T .
Hence a requirement for stable prediction is that

n(z)�u
!
+[1; z�1; :::]Kv = d+; ) y

!
=



d��
(16)

with  stable. Next add in the requirement for
poles d̂+ to be in �u

!
to give condition

n(z)
� û
!

d̂+

+[1; z�1; :::]Kv = d+
̂

d̂+

; �u
!
=

� û
!

d̂+

;  =
̂

d̂+

(17)
Rearranging this gives the diophantine identity

n(z)� û
!
+ d̂+[1; z

�1
; :::]Kv = d+̂ (18)

Eqn.(18) is easy to solve; the minimal order so-
lution for � û

!
(this corresponds to the NDOF

solution for �u
!

- the order of ̂ is unimportant)

implies matrices K̂1; K̂2 such that

� û
!
= K̂1v; ̂ = K̂2v (19)

As noted in Remark 2.1, K1 will have at most
r non-zero rows. The whole class of solutions,
ensuring that f also has poles d̂+ takes the form

� û
!
= K̂1v + �d+ck; �u

!
= �

d̂
�1

+

[K̂1v + �d+ck]

(20)

Algorithm 4.1. New prestabilised predictions: Sub-
situte input trajectory (20) into (15) to �nd the
output predictions and select ck to ensure coinci-
dence as in (1). Use this ck to compute �uk.

Remark 4.1. Because � û
!
is taken to be the mini-

mal order solution of (18), selecting ck = 0 ensures
that �u

!k
is the tail of �u

!k�1
.

5. COMPARISON OF ALGORITHMS

In this section we will illustrate how the new
prediction class improves on the performance ob-
tainable with the old prediction class of (Rossiter,
2001c). We will use the same examples as in
(Rossiter, 2001c), all of which have unstable poles.

5.1 Examples used

Several processes with di�erent types of unstable
poles/zeros are trialed.

� Example 1 (unstable pole at z = 1:5; 	 =
0:7; ny = 12).

G(z) =
z
�1
� 0:3z�2

1� 1:9 + z�10:48z�2 + 0:18z�3

� Example 2 (unstable pole z � 1:49, unstable
zero z � 1:22). 	 = 0:7; ny = 12.

G(z) =
0:2126z�1 � 0:2594z�2

1� 2:3967z�1+ 1:3499z�2

0 5 10 15 20 25 30 35 40 45 50
−0.2

0

0.2

0.4

0.6

0.8

1

1.2

Outputs

0 5 10 15 20 25 30 35 40 45 50
−0.5

0

0.5

Inputs

Fig. 3. Simulations for example 1

0 5 10 15 20 25 30 35 40 45 50
−1

−0.5

0

0.5

1

Outputs

0 5 10 15 20 25 30 35 40 45 50
−4

−3

−2

−1

0

1

2

3

Inputs

Fig. 4. Simulations for example 2

� Example 3 (unstable pole z � 1:22, unstable
zero z � 1:35). 	 = 0:7; ny = 12

G(z) =
0:18z�1 � 0:2432z�2

1� 2:1262z�1+ 1:1052z�2

� Example 4 (2 unstable poles z = 1:2068 �
0:1885i). 	 = 0:7; ny = 2 (ny = 8 for
algorithm 2.2, unstable for lower ny).

G(z) =
0:2661z�1 � 0:2172z�2

1� 2:4136z�1+ 1:4918z�2

5.2 Simulation examples

Typical closed-loop simulations are presented for
examples 1-4 in �gures 3-6 respectively. Dashed,
dotted, solid and dash-dot lines are used for algo-
rithms 2.1, 2.2, 4.1 and the reference respectively.
Algorithm 2.1 cannot stabilise example 2 and al-
gorithm 2.2 is displayed in �gure 7 for example 4
as its best performance is so poor.

Overall algorithm 4.1 is the best - it has per-
formed well on all the examples. Algorithm 2.1
has not stabilised example 2 and in fact can be
hard to tune (Rossiter, 2001c) although when
tunable its performance is OK (�gures 3,5,6). Al-
gorithm 2.2 is easy to tune to give stable responses
(Rossiter, 2001c) which are usually satisfactory
(�gs 3-5) though it could be argued a little too
jerky. However for some examples (e.g. �gure 7)
it cannot be tuned satisfactorily at all. The advan-
tage of algorithm 4.1 is that it appears to perform



0 5 10 15 20 25 30 35 40 45 50
−0.5

0

0.5

1

Outputs

0 5 10 15 20 25 30 35 40 45 50
−3

−2

−1

0

1

Inputs

Fig. 5. Simulations for example 3

0 5 10 15 20 25 30 35 40 45 50
−0.2

0

0.2

0.4

0.6

0.8

1

1.2

Outputs

0 5 10 15 20 25 30 35 40 45 50

−0.5

0

0.5

1

1.5

Inputs

Fig. 6. Simulations for example 4

0 5 10 15 20 25 30 35 40 45 50
−1

0

1

2

3

4

5

6

Outputs

0 5 10 15 20 25 30 35 40 45 50
−20

−10

0

10

20

Inputs

Fig. 7. Simulations for example 4

as well as and often better than both algorithms
2.1,2.2 and hence avoids the need for algorithm
selection. Future work will look more carefully
at whether this algorithm does indeed give easier
tuning in general.

6. CONCLUSIONS

It is clear that the variants of PFC based on
unstable predictions and prestabilised predictions
have di�erent strengths and weaknesses. It would
be desirable to have a single algorithm that per-
formed well in all scenarios, but was still simple.
This paper has proposed a modi�cation to the
class of predictions which allows the de�nition
of such an algorithm. Its superior performance is
illustrated by examples.

7. REFERENCES

Clarke, D.W., C. Mohtadi and P.S. Tu�s (1987).
Generalised predictive control, Parts 1 and 2,
Automatica, 23, pp. 137-160

Cutler, C.R. and B.L. Ramaker (1980), Dynamic
matrix control - a computer control algo-
rithm, Proc. ACC, San Fransisco

Garcia, C.E. and M. Morari (1982), Internal
Model control 1. A unifying review and some
new results, I&EC Process Design and Devel-
opment, 21, pp308-323

Kouvaritakis, B., J.A. Rossiter and A.O.T.Chang
(1992), Stable Generalized predictive control:
an algorithm with guaranteed stability, Proc
IEE, 139, No.4, pp349-362

Kouvaritakis, B., J.R. Gossner and J.A. Rossiter
(1996), Apriori stability condition for an arbi-
trary number of unstable poles, Automatica,
Vol. 32, No.10, pp. 1441-1446

Kouvaritakis, B., J.A. Rossiter and M. Cannon
(1998), Linear quadratic feasible predictive
control, Automatica, 34, 12, pp1583-1592

Mosca, E. and J. Zhang (1992), Stable redesign of
predictive control, Automatica, 28, pp1229-
1233

Rawlings, J.B. and K.R. Muske (1993), The sta-
bility of constrained receding horizon control,
Trans IEEE AC, 38, pp1512-1516

Richalet, J., A. Rault, J.L. Testud and J. Papon
(1978), Model predictive heuristic control: ap-
plications to industrial processes, Automat-
ica, 14, 5, pp413-428

Richalet, J., Commande predictive, R 7 423
Rossiter, J.A., J.R. Gossner and B. Kouvaritakis

(1996) In�nite horizon stable predictive con-
trol, Trans. IEEE AC, 41, 10, pp1522-1527.

Rossiter, J.A., M.J. Rice and B.Kouvaritakis
(1998), A numerically robust state-space ap-
proach to stable predictive control strategies,
Automatica, 38, 1, 65-73

Rossiter, J.A. and J. Richalet (2001), Re-aligned
models for prediction in MPC: a good thing
or not ? APC6 (York)

Rossiter, J.A., Stable prediction for unstable in-
dependent models, submitted

Rossiter, J.A., (2001b), Predictive functional con-
trol of unstable processes, Report no. 807,
University of SheÆeld.

Rossiter, J.A., (2001c) Predictive Functional Con-
trol: to prestabilise or not ?, Internal Report
810, University of SheÆeld.

Rossiter, J.A., (2002), Handling constraints with
predictive functional control of unstable pro-
cesses, Proc. ACC 2002

Scokaert, P.O.M. and J. B. Rawlings (1998), Con-
strained linear quadratic regulation, IEEE
Trans AC, 43, 8, pp1163-1168


