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Abstract: In this paper some of the relationships between B-splines and linear control
theory is examined. In particular, the controls that produce the B-spline basis is
constructed and compared to the basis elements for dynamic splines.

Keywords: Splines, control theory, smoothing, interpolation

1. INTRODUCTION

In this paper the connections between the theory
of B-splines and control theoretic or dynamics
splines are examined. The theory of B-splines is
a well developed area of applied numerical anal-
ysis and interpolation theory, and the use of B-
splines rivals that of Bezier curves in applicability
to computer graphics and approximation theory.
(See for example (de Boor, 1968),(de Boor, 1978).)
On the other hand, the idea of dynamic splines
was first used by Crouch and his colleagues in
the determination of aircraft trajectories (Crouch
and Jackson, 1991). Quite independently Martin,
Egerstedt, and their colleagues began exploiting
the properties of controlled linear systems to solve
interpolation and approximation problems.

Since the introduction of splines by Shoenberg,
(Shoenberg, 1958),(Shoenberg and Whitney, 1953),
it has been recognized that they are extremely
powerful tools both in application and theory.
Many variants have been introduced over the
years and this paper is an attempt to show how
some of these variations are related.

In (Sun et al., 2000), (Martin et al., 2001) it was
recognized that the dynamics splines generalized
the classical concepts of splines and that many
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applications were easy to formulate and solve
using the control theoretic approach. The idea is
to find a control that drives a linear, single-input,
single-output control system of the form

T=Ax+bu, y=cz
through, in the case of interpolation, a series of
way points or close to a series of way points, in
the case of smoothing. Here, x € R™, u,y € R,
and A, b, c are matrices and vectors of compatible
dimensions. When adopting this control theoretic
point of view, the goal becomes that of construct-
ing the control directly rather than the actual
spline.

Given a set of data of the form
{(tivai) 1= 13"'3N}a

where o; € R, ¢ = 1,...,N, and 0 < t; <
... <ty < T for some final time T, we generate
two optimal control problems that produce the
desired controls. The first problem, the problem
of interpolating splines, is as follows.

Problem 1.
T

min ]/uz(t)dt

u€La[0,T
0

subject to the constraints

y(ti):ai, 7,:1,,N



As shown in (Sun et al., 2000), this problem can be
solved by reducing it to the problem of finding the
point of minimal norm on an affine linear variety
in the Hilbert space, L2[0,T].

The second problem, the problem of smoothing or
approximation, is formulated as follows.

Problem 2.
T N
. 2 2
min tdt+ H ti — Oy s
Lmin | [ > uilolt) - )
0 =

where the weights satisfy w; >0, i1 =1,..., N.

The main goal of this paper is to understand the
extent to which these two problems can be applied
to the theory and application of B-splines.

2. A BASIS FOR B-SPLINES

We consider the standard basis for normalized,
uniform B-splines. We take two approaches. The
first is a modification of the general approach
of de Boor (de Boor, 1978) and is inspired by
(Takayama and Kano, 1995). The second is a
more geometric approach, where we determine the
geometric properties of the basis in order to gain
an understanding of its relationship to optimal
control.

The following recursive algorithm for the compu-
tation of the basis elements of the B-splines is
taken from (Takayama and Kano, 1995):

Algorithm 1. Let Ny (s) =1 and compute
1-s

Nox(s) = A Nox—1(s)
s
Nix(s) = ENkakq(S)
k—7j+s
NjJQ(s) = 7; Njfl,kfl(s)
1+5—s
+ Z) Nj,kfl(s)a J = la ak -1

We then define the basis element By(s) as
Ni—ju(s —j) j<s<j+1
0 §<0, k+1<s.

Bk (S) =

The spline function is given by a weighted sum
of shifted B-splines for a fixed value of k, i.e. the
spline function becomes

M
Sk(t) = eiBi(t—i+1). (2)

For now our primary objects of interest are the
basis element By(s). We first note that

BP©0)=0 and BY(k+1)=0

Table 1. N, 5 for k= 0,1,2,3.

k:j 0 1 2 3
0 1
1| (1-s) s
— s + 25 — 2s S
0 1 211425 — 252 2
2 2 2
— s — 6s“ 4 3s +3s+3s“ —3s5° | s
3 1 314652 +35°[1+3s+3s2—3s° | s°
3! 3! 3! 3l

for l =0,1,---,k — 1, where B,El)(-) denotes the
lth derivative.

We furthermore observe that By (s) is a piecewise
polynomial of degree k and that it is £ — 1 times
continuously differentiable. These are of course
just the properties that make it a polynomial
spline. We are, however, particularly concerned
with the characterization of the kth derivative.
This function is piecewise constant and if we
use a piecewise constant input to the controlled
differential equation

k
Tot) = u(t)

we can generate the function By (¢). It is tedious to
compute the derivatives of the general By (t) so in
the remainder of this paper we restrict ourselves
to the cubic case.

In Table 1 we calculate the first few of the ele-
ments, using Algorithm 1.

3. A GEOMETRIC APPROACH

We know that the B-spline, Bs, should have the
property that the Bs(0) = B{Y(0) = B (0) = 0
and Bs(T) = BSY(T) = B (T) = 0, where the
spline is defined on the interval [0, T, in order to
ensure that it has two continuous derivatives over
the entire real line.

We first observe that
Bs(t) =
B3(t) = 4(t-T)}, T-1<t<T

13, 0<t<1

wle

for some a and d. Now, on the interval [1,2]
BV =b(t — 12+ ot — 1)+

and in order for Bél)(t) and B§2)(t) to be continu-
ous we must have 7 = a and o = 2a respectively.
Thus we have that

BSO(t) = b(t —1)% + 2a(t — 1) + a.

We can show in a similar fashion that on the
interval [T — 2,T — 1] we must have

B{O() =t — T+ 1)2 = 2d(t — T+ 1) + d.

We now have four free parameters a,b, c,d that
need to be determined.



Let T = 4. In order to achieve continuity of the
first and second derivatives at ¢t — 2 we must have

B{"(2)=b+2ata=c+2d+d,  (3)
B (2) = 2b + 20 = —2¢ — 2d. (4)
Thus we have used two of the degrees of freedom.

We now integrate Bél)(t) to obtain Bs(t), and it
can be shown that

Ba(t) = [ B§V(s)ds = 2((Ta + b + ¢+ 7d)
+d(t—4)%) 3<

Now, in order for B3(4) = 0 we must have

<t <4,

Ta+b+c+7d=0. (5)

Solving equations (3)-(5) in four unknowns we
have b = —3a, ¢ = 3a, and d = —a. Thus we
may use a as the free parameter to obtain

a%t?’ 0<t<1
g~ (E =1+ (6= 1)+ (6= 1)
Bs(t) =< 1 , litg2 (6)
a5 (=31 (=3) — (— )
2<t<3
a%l(t—él)?’ 3<t<4

From this we see that a is just a scaling parameter
and the continuity of the derivatives can easily be
checked.

Now that the parameters have been chosen we can
evaluate the third derivative to obtain

% 0<t<l

3, ) —ba 1<t<2

Bs"() =9 64 o2<t<3 (M)
20 3<t<d

Letting v = Bés)(t) gives us that the spline
function can be uniquely generated by the control
system

3

di3
for a given choice of a.

z = u, z(0) = z(0) = £(0) = 0,

4. AN OPTIMAL CONTROL APPROACH

A natural question to ask is if the basis element
for the B-splines By (t) is optimal with respect to
some standard optimal control law in the same
sense that interpolating and smoothing splines
are optimal. Because of the initial and terminal
conditions care must be taken in the formulation
of the optimization problem. Here we continue
to restrict our attention to cubic case for ease of
computation. It is natural to use the system
d3

%miu

because in this case we can prescribe the correct
boundary values in a natural manner as x(0) =
%(0) = £(0) = 0 and z(4) = z(4) = z(4) = 0.

We are thus asking for a control that is piece-
wise constant to generate the B-spline. From the
proceeding work we see that Bés)(t) in (7) is the
desired control. Now in the space of B-splines
with nodes at the integers, the B-spline from the
previous section is certainly optimal with respect
to some optimal control law due to its uniqueness.
However, a reasonable question to ask is if it is the
solution to the following problem.

Problem 3.

min - lul
u€ Loo[0,4]

subJect to the constraints 2 t3 z =u,z(0) = 2(0) =
#(0) =0 and x(4) = #(4) = £(4) = 0.

In other words, are the nodes forced by some
choice of the optimal control law? Surprisingly the
answer is no. There is a bang-bang control law
that does better than the uniform B-spline, as we
will see in what follows.

4.1 Dual Optimization

If we assume that the B-spline passes through
the point £ at time ¢ = 2, then the augmented
optimization constraints become

= [Fu(t)dt =0

4
fo oy u(s)dsdt = [(4 —

fo fo fo r)drdsdi = 2f0 (4—t)%u(t)dt

)dt =0

*2fo _tzu )dt =&,

where (2 —1)3 = (2 —t)? if t < 2 and 0 other-
wise. These constraints can in turn be rewritten,
adopting an inner product notation, as

(Lu) =0, (4—t,u) =0, ((4—1)2,
((2=1)3,u) = 2,

where the inner product is taken between elements
in Leo[0, 4] and L1]0, 4], which is the dual space of
Loo[0,4].

u)y=20

Now, in (Luenberger, 1969) the following standard
theorem in dual optimization can be found:

Theorem 1. Let X be a Banach space and let X*
be the dual of X. Given y; € X, ¢ = 1,...,p,
suppose that D = {z* € X* | (y;,2*) = ¢, i =
1,...,p} is nonempty. Then

min ||z*]| = max c’a,

z*e€D |Ya|<1
where ¢ = (c1,...,cp)T and Ya = yra1+. . 4ypa,.
Furthermore, the optimal a and z* satisfy



(Ya,z7) = [[Yal - [|27]].

By applying Theorem 1 to our problem, the dual
maximization problem becomes

max ay,
IYa|w, <1

where a = (a1, az, a3, as)” and
Ya = a1+ ax(4 —t) +az(4 —)* + ag(2 — 1)3.
If a* € I1]0, 4] solves the dual problem then the
optimal ©* has to satisfy
Ya,v") = [[Ya"|| £, [|v"] oo -

This directly gives that |u*| has to be constant
on the entire interval and that it only changes
sigh when Ya changes sign. It is thus a bang-bang
controller that solves the problem.

It is not difficult to see that Ya and hence u*
changes sign exactly three times in the interval
(0,4), and thus we assume

U 0<t <ty
U tH1 <t<ts
U ta <t <13 (8)
U t3<t<4

with 0 < t1 < t9 < t3 < 4. Then it can be shown
that the constraints #(4) = #(4) = z(4) = 0 are
expressed as
r1—1r9+1r3 =2, r%—r%Jrr?z,:S
r‘;’ —TS’+T§ =32,
where ™ = 4 — tl,Tg = 4 — tz,Tg = 4 — t3.
Solving this system of algebraic equations with
4 > 11 > r9 > 13 > 0 yields the unique solution

T1:2+\/§, 7‘2:2, 7‘3:2—\/5,
and we obtain optimal switching times as

b1 =2—V2 t3=2 t3=2+V2. (9)
On the other hand, the value of U is obtained
from the constraint z(2) = ¢ with & = 2/3 as

U=(2+v2))2

Finally, the optimal solution z(¢) is obtained by

I 0<t<t
6 =2t —t1)* t <t<?2
—z(t) = N3 a3
U (4—t)2 =20tz —t)° 2<t<ts
(4 —t) ty <t <4

In Figure 1, the solution z(t) is depicted together
with the B-spline Bs(t) (dotted line).

4.2 Bang-Bang Control

There is another way in which to approach this
problem. We can assume that there is a bang-bang
control law and simply ask if the nodes are forced.

0.7
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Fig. 1. The optimal bang-bang solution.
Let

1 0<t<ty
-1 t1 <t<ts
ta <t <13
-1 t3<t< 4

(10)

We only assume that 0 < t; <ty <13 < 4. Using
#(t) = [y u(s)ds, @(t) = [o(t — s)u(s)ds
a(t) = L [1(t — s)%u(s)ds,

we can show that, in order to have continuities of
%(t), (1), z(t) at t = t2, we must have

a—b=d-c
a? +2ab — b2 = —d® — 2cd + 2
a® + 3a%b + 3ab? — b3 = d® + 3d%c + 3dc? — &3,

where a:tl, b:tz—tl, Cc= t3 —tg, d:4—t3.
Solving these equations together with a fourth
equation a+b+c+d = 4 gives a positive solution
c=b=+2, a=d=2—+/2 Thus we get

h=2-V2, t2=2, t3=21+2,

which is consistent with the solution to the opti-
mal control problem in the previous subsection.

5. THE CONSTRUCTION OF OPTIMAL
SPLINES USING B-SPLINES

As we saw in the preceding section the basis
elements for uniform B-splines are not optimal in
any usual sense. However we can find in the class
of all B-splines optimal choices. We will construct
two types of splines in analogy with dynamic
splines, interpolating and approximating.

Let a data set D be given in R as
D={a;eR: i=1,---,N}
Consider the system

dk
() = u()



and a restricted set of controls

M dk
C = {u(t): ut) = ZTZ.%B,Q (t—it1), 7; € R}.

We now choose the two cost functions from the
theory of dynamic splines, and pose two related
problems:

Problem 4. [Interpolation]

gleigj(u), J(u) = /uz(t)dt (11)

subject to the constraints z(t;) = «;,1 =1,---, N.

Problem 5. [Approximation]

e0 N
min J (u) = / uz(t)dtJerwi(x(ti) — ). (12)

We can integrate over the entire real line since
the B-splines and all of their derivatives vanish
outside of a compact set and since the control
is allowed to only be a finite sum. Now these
problems are both finite dimensional because the
space of controls is finite dimensional. It should
be noted that they differ from Problem 1 and
Problem 2 only in the space of controls and that
the number of basis elements is not necessarily
the same as the number of data points. This is
different that Problem 1 and Problem 2. There
the number and the form of the basis elements is
determined by the number of data points. Since
in this case we have chosen a basis that constraint
is lifted. For the cost function in (11) we have

J(r) = / (Z Ti;%Bk (t —i+1))%dt.

In the case of k = 3, we can show that

J(r) =7TaGT,
where 7 = (11,72, -,7m)7, and G is the gram-
mian whose ij-element g;; is given by g;; = g5
with gO = 207 gl - _157 gZ - 67 g?) - _17

and g; = 0 ¢ > 4. The matrix G is positive
definite since the basis elements are independent
functions.

We now calculate the constraints as functions of
7. We have after integrating that
M
o(t) =Y mBs(t—i+1)
i=1
and hence the constraint is given by
M
o(t;) = > mBs(tj—it+1) =5, j=1,2,---,N.
i=1
From the structure of Bs we see that Bs(t; — 1 +
1) #0if and only if 4 — 1 < ¢; < i + 3. Let

B denote the matrix such that Br = a where
a = (a1, a,---,ay)T. Problem 4 then reduces
to the following

min 77 G7, subject to BT =a.  (13)
TERM

Now if BT = « is consistent and the matrix B is
of row full rank, then the optimal solution 7* is
given explicitly as

™ =G BT (BG'BT) la. (14)

Problem 5, the problem of approximation, can be
rewritten in a similar manner as

J(r)=71TG7 4 (BT — 0)TW(BT — 0)

where W is the diagonal matrix with the weights
w; on the diagonal. Noting that G + BTW B is
positive-definite, the optimal solution 7* to this
minimization problem is given as

#* = (G + BTWB) 'BTWa. (15)

It can be shown that if B is of row full rank then
as w; — +0o Vi, 7* converges to the solution 7*
for interpolation problem given in (14) .

6. CONTROL POINTS, POLYGONS AND AN
EXAMPLE OF OPTIMAL CONSTRUCTION

The concepts of control points and control poly-
gons are essential to the application of B-splines
and for that matter Bezier curves. A spline, s(t),
of degree k in R™ is constructed using the basis of
B-splines By(t) as

M
s(t) =Y 7Bp(t—i+1) (16)
i=1
and the set of points {r; e R*: i=1,---, M}
is the set of control points. The control polygon is
the polygonal line connecting the control points.
The control points determine the shape of the
spline function.

In the preceding section we constructed optimal
weights in the scalar case. By repeating this pro-
cedure or by using a more complicated set of
dynamics we can produce optimal vector valued
weights. Thus given a set of data points

{a; €R™: i=1,---,N}

we can produce a set of control points optimal
for this set of data, either as interpolation or as
approximation. To see how this might be done
consider a real curve p(t) € R™ Our goal is to
reproduce this curve using optimal B-splines. If we
are precise in our description of the curve choose
N points that lie on the curve,

D={pt;):i=1,---,N}.



We will use these points as data to construct the
control points. The designer must choose these
points and he must decide on the degree of the
spline that he wants to construct. We assume that
we are constructing a spline of degree k. Then as
in the preceding section let

M
dk
C = {u(t) : u(t) = ZT,.%B,c (t—i+1), 7 € R"}.
=1

The set C consists of all allowable controls that
we use in the construction of the optimal spline.

One of the important applications of splines is in
the design of letter fonts, and we show the results
as font patterns generated from the curves in R3.

As p(t), we take a cubic spline in R? given by

M
p(t) =Y piBs(t —i+1)

=1

where p; € R? are given control points. Figure 2
shows a Japanese alphabet pronounced ‘ru’ gen-
erated from p(t): This is obtained by computing
the cross sectional area between a virtual writing
device (a cone) moving along p(t) in space 0 —zyz
and a virtual writing plane o—zy. In this example,
a set of 20 control points counting multiplicities
is used and is shown by ‘squares’ together with
the control polygon in zy-plane. The figure on the
right is the font pattern obtained in this fashion,
and it may be considered as a good model of an
actual brush-writing alphabet.

Fig. 2. Japanese character "Ru’ generated by cubic
spline.

Such a curve or font pattern is then reconstucted
using optimal approximation by cubic B-splines
(i.e. k = 3in (16)). In order to deal with curves in
R3, we apply the method developed in Section 5
for scalar case to each of the three elements inde-
pendently. p(t) is sampled at ten equally spaced
data points {3,5,7,9,11,13,15,17, 19, 20}.

Figure 3 show the results for various weighting
matrices W. We see that the original font pat-
tern is recovered more accurately as the weights
increase. We also verified that by increasing the
weights further the pattern approaches the inter-
polation result, It might be worth noting that
there are various degrees of cursive fonts in
Japanese brush writing, which may be modeled

Fig. 3. Approximating construction with W = I,
W =101, and W = 100 (from left).

by a suitable weight adjustment in the optimal
approximation as described here.

7. CONCLUSIONS

In this paper we investigate the connections be-
tween B-splines and linear control theory. We show
how the B-spline basis functions can be obtained
by driving a third order control system with a
piecewise constant input. However, we also show
that the B-splines are in fact suboptimal with re-
spect to an infinity-norm minimization, and that
the solution to this problem is of the bang-bang
type. We show that an optimal set control points
can be constructed within the space of B-splines.
Finally an example is developed to demonstrate
the efficacy of this construction.
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