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Abstract: Model predictive control (MPC) is applied to the Caltech ducted fan, a
thrust-vectored flight experiment. A real-time trajectory generation software based
on spline theory and sequential quadratic programming is used to implement the
MPC controllers. Timing issues related to the computation and implementation of
repeatedly updated optimal trajectories are discussed. Results show computational
speeds greater than 10 Hz, 2.5 times that of the actuator dynamics. The MPC
controllers successfully stabilize a step disturbance applied to the ducted fan and
compare favorably to LQR methods.

Keywords: predictive control, model-based control, real-time, flight control,
stabilization, constraints

1. INTRODUCTION

This paper is concerned with the application
of model predictive control (MPC) to a high-
performance flight control experiment shown in
Figure 1. In MPC, the current control action is
determined by solving a finite horizon open-loop
optimal control problem on-line. Each optimiza-
tion yields a control law that is applied to the
plant until the next sampling instant. MPC is
traditionally applied to plants with dynamics slow
enough to permit computations between samples.
It is also one of few suitable methods in applica-
tions that can impose constraints on the states
and or inputs, as the constraints are directly
enforced in the on-line optimal control problem.
With the advent of faster modern computers, it
has become possible to extend MPC to systems
governed by faster dynamics that warrant this
type of solution. An example of such a system
is the Caltech ducted fan, a thrust-vectored flight
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Fig. 1. Caltech ducted fan experiment
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control experiment where actuation and spatial
constraints are present.

Development and application of MPC originated
in process control industries where plants being
controlled are sufficiently slow to permit its im-
plementation. This was motivated by the fact that
the economic operating point of a typical process
lies at the intersection of constraints. An overview
of the evolution of commercially available MPC
technology is given in (Qin and Badgwell, 1997).
Most algorithms use only impulse and step re-
sponse models. More recent developments in pro-
cess applications employ MPC based on neural
networks (Tan et al., 2001) and fuzzy logic (Huang
et al., 2000), (Mutha et al., 1997). A motivation
for the fuzzy logic approach is that it can be ap-
plied to highly nonlinear systems and attempts to
alleviate the computational demand of attempting
to use MPC with first principles-based models.

Following the large number of successful industrial
applications, academic researchers began to inves-
tigate stability of MPC theoretically. A survey
of the current state of stability theory of MPC
is given in (Mayne et al., 2000). The paper de-
tails the various MPC problem formulations that
guarantee stability, particularly when the system
is modeled by a state equation and constrained.
Applications of MPC to systems other than pro-
cess control problems have begun to emerge over
recent years ((Low and Zhuang, 2000)). Neural
Network based MPC is applied to an underwater
vehicle in (Kodogiannis et al., 1996), robots in
(Ollero et al., 1994), a wind-tunnel experiment in
(Scott and Pado, 2000) and a helicopter experi-
ment in (Wan and Bogdanov, 2001). In (Singh and
Fuller, 2001), MPC is used in simulation to stabi-
lize a linearized simplified UAV helicopter model
around an open-loop trajectory, while respecting
state and input constraints.

The main contribution of this paper is to demon-
strate an implementation of MPC on a experiment
with dynamics of considerable speed, namely
flight dynamics, and strict constraints on the in-
puts. This is possible because of modern com-
putational power and a software package (NTG,
for nonlinear trajectory generation) developed at
Caltech (Milam et al., 2000). Timing issues that
arise from real-time MPC computations are eluci-
dated for this system. A method for applying the
generated optimal trajectories while accounting
for nontrivial computational time is detailed and
implemented. Experimental tests compare vari-
ous MPC parameterizations and show the success
of this methodology for real-time control of the
ducted fan. Specifically, the method is compared
to a static hover LQR controller and a gain-
scheduled controller for stabilization of a step dis-
turbance to the ducted fan. Results show that the
MPC controllers have a bigger region of attraction
than the static hover LQR controller and perform
comparably to the gain-scheduled controller.

This paper is organized as follows: The experi-
mental set-up is detailed in §2, the MPC problem
defined in §3, LQR design details in §4, results in
§5 and conclusions in §6.

2. FLIGHT CONTROL EXPERIMENT

The Caltech ducted fan is an experimental testbed
designed for research and development of nonlin-
ear flight guidance and control techniques for Un-
inhabited Combat Aerial Vehicles (UCAVs). The
fan is a scaled model of the longitudinal axis of a
flight vehicle and flight test results validate that
the dynamics replicate qualities of actual flight
vehicles (Milam and Murray, 1999).

2.1 Hardware

The ducted fan has three degrees of freedom: the
boom holding the ducted fan is allowed to operate
on a cylinder, 2 m high and 4.7 m in diameter,
permitting horizontal and vertical displacements.
Also, the wing/fan assembly at the end of the
boom is allowed to rotate about its center of
mass. Optical encoders mounted on the ducted
fan, gearing wheel, and the base of the stand
measure the three degrees of freedom. The fan is
controlled by commanding a current to the electric
motor for fan thrust and by commanding RC
servos to control the thrust vectoring mechanism.
The sensors are read and the commands sent
by a dSPACE multi-processor system, comprised
of a D/A card, a digital IO card, two Texas
Instruments C40 signal processors, two Compaq
Alpha processors, and a ISA bus to interface with
a PC.

2.2 Software

The dSPACE system provides a real-time inter-
face to the 4 processors and I/O card to the
hardware. The NTG code resides on one of the
alpha processors. A detailed description of NTG
as a real-time trajectory generation package for
constrained mechanical systems is given in (Milam
et al., 2000). The package is based on finding
trajectory curves in a lower dimensional space
and parameterizing these curves by B-splines. Se-
quential quadratic programming (SQP) is used to
solve for the B-spline coefficients that optimize the
performance objective, while respecting dynam-
ics and constraints. The package NPSOL (Gill et
al., 1998) is used to solve the SQP problem.

2.3 Model of the ducted fan

The full nonlinear model of the fan including
aerodynamic and gyroscopic effects is detailed in
(Milam and Murray, 1999). For the implementa-
tion of the receding horizon approach outlined in
this paper, the planar model of the fan will be
utilized. The ODE’s for the planar ducted fan may
be written

mẍ cos θ − (mz̈ −mg) sin θ = FXb

mẍ sin θ + (mz̈ −mg) cos θ = FZb

(J/r)θ̈ = FZb
.

(1)

The configuration variables x and z represent,
respectively, horizontal and vertical inertial trans-
lations of the fan while θ is the rotation of the
fan about the boom axis. These variables are



measured and their derivatives are computed with
a FIR filter. The inputs FXb

and FZb
are the

body-fixed axial and transverse thrust compo-
nents, respectively. For notational ease later we
define the vector variables x = [x, z, θ, ẋ, ż, θ̇]T

and u = [FXb
, FZb

]T .

3. APPLICATION OF MPC

This section outlines the MPC problem and a
timing method for updating real-time trajectories
while accounting for non-negligible computational
time. The adopted control approach is a hybrid
of MPC and Control Lyapunov Function (CLF)
based ideas (Jadbabaie et al., 1999).

3.1 MPC formulation

In MPC, the current optimal control u∗T (τ ;x0), τ ∈
[t0, t0 + T ] for current state x0 at time t0 is the
argument that respects the following scalar objec-
tive:

inf
u(·)

∫ t0+T

t0

q(x(τ),u(τ)) dτ + V (x(t0 + T )), (2)

s.t. ẋ = f(x,u), x(t0) = x0, (3)

a ≤ ψ(x(t0),u(t0)) ≤ b,

c ≤ φ(x(t),u(t)) ≤ d.

The vector φ is a trajectory constraint (enforced
over the entire time interval) while ψ is an initial
time constraint. The control objective is to steer
the state to an equilibrium point, usually the
origin. No terminal constraint is enforced in this
study. In theory, the resulting control u∗T (·) is
instantaneously applied until a new state update
occurs, usually at a prespecified sampling interval
of time δ seconds. Repeating these computations
yields a feedback control law.

For the ducted fan problem, differential equation
(3) corresponds to equation (1) and the equilib-
rium point of interest is hover:

xeq , [0, 0, π/2, 0, 0, 0]T , ueq , [mg, 0]T . (4)

The vector ψ contains 6 initial conditions, or
equality constraints, on the state x and two con-
straints on the inputs. The inputs are initially
constrained to be within 0.25 N of the previously
computed optimal inputs, at the appropriate in-
stant of time. This amount of time will be detailed
in the next section that describes how the timing
of the MPC process is done.

The sole trajectory constraint on the state is −1 ≤
z ≤ 1. For the tests considered in this paper, the
fan does not hit the boundaries of this constraint,
so it is not included in the optimization problem.
Trajectory constraints on the inputs are

[

0
−Fmax

Xb
/2

]

≤

[

FXb

FZb

]

≤

[

Fmax
Xb

Fmax
Xb

/2

]

, (5)

where Fmax
Xb

is 11 N and mg is 7.3 N. With respect
to equation (2), the cost is defined as

q(x,u) =
1

2
x̂TQx̂+

1

2
ûTRû, (6)

V (x) = γx̂TP x̂, where

x̂ , x− xeq = [x, z, θ − π/2, ẋ, ż, θ̇]T ,

û , u− ueq = [FXb
−mg,FZb

]T ,

Q = diag{4, 15, 4, 1, 3, 0.3},

R = diag{0.5, 0.5},

γ = 0.075 and P is the unique stable solution to
the algebraic Riccati equation corresponding to
the linearized dynamics of equation (1) at hover
and the weights Q and R. Note that if γ = 1/2,
then V (·) is the CLF for the system corresponding
to the LQR problem. Instead V is a relaxed (in
magnitude) CLF, which achieved better perfor-
mance in the experiment. In either case, V is valid
as a CLF only in a neighborhood around hover
since it is based on the linearized dynamics. We
do not try to compute off-line a region of attrac-
tion for this CLF. Experimental tests without any
terminal cost and/or the input constraints leads
to instability. The results in this paper show the
success of this choice for V for stabilization. An
inner-loop PD controller on θ, θ̇ is implemented
to stabilize to the open-loop MPC states θ∗T , θ̇∗T .
The θ dynamics are the fastest for this system
and although most MPC controllers were found
to be nominally stable without this inner-loop
controller, small disturbances could lead to insta-
bility.

The optimal control problem is set-up in NTG
code by parameterizing the three position states
(x, z, θ), each with 8 B-spline coefficients. Over the
receding horizon time intervals, 11 and 16 break-
points were used with varying horizon lengths.
Breakpoints specify the locations in time where
the differential equations and any constraints
must be satisfied, up to some tolerance. The value
of Fmax

Xb
for the input constraints is made con-

servative to avoid prolonged input saturation on
the real hardware. The logic for this is that if
the inputs are saturated on the real hardware, no
actuation is left for the inner-loop theta controller
and the system can go unstable. The value used
in the optimization is Fmax

Xb
= 9 N.

3.2 Timing set-up

Computation time is nonnegligible and must be
considered when implementing the optimal tra-
jectories. The computation time varies with each
optimization as the current state of the ducted
fan changes. The following notational definitions
will facilitate the description of how the timing is
set-up.

i - Integer counter of MPC computations.
ti - Value of current time when MPC compu-
tation i started.
δc(i) - Computation time for computation i.



u∗T (i)(t) - Optimal output trajectory corre-
sponding to computation i, with time inter-
val t ∈ [ti, ti + T ].

A natural choice for updating the optimal tra-
jectories for stabilization is to do so as fast as
possible. This is achieved here by constantly re-
solving the optimization. When computation i is
done, computation i + 1 is immediately started,
so ti+1 = ti + δc(i). Figure 2 gives a graphical
picture of the timing set-up as the optimal input
trajectories u∗T (·) are updated. As shown in the
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Fig. 2. Receding horizon input trajectories

figure, any computation i for u∗T (i)(·) occurs for
t ∈ [ti, ti+1] and the resulting trajectory is applied
for t ∈ [ti+1, ti+2]. At t = ti+1 computation
i + 1 is started for trajectory u∗T (i + 1)(·), which
is applied as soon as it is available (t = ti+2).
For the experimental runs detailed in the results,
δc(i) is typically in the range of [0.05,0.25] sec-
onds, meaning 4 to 20 MPC computations per
second. Each optimization i requires the current
measured state of the ducted fan and the value of
the previous optimal input trajectories u∗T (i− 1)
at time t = ti. This corresponds to, respectively,
6 initial conditions for state vector x and 2 ini-
tial constraints on the input vector u. Figure 2
shows that the optimal trajectories are advanced
by their computation time prior to application
to the system. A dashed line corresponds to the
initial portion of an optimal trajectory and is not
applied since it is not available until that com-
putation is complete. The figure also reveals the
possible discontinuity between successive applied
optimal input trajectories, with a larger discon-
tinuity more likely for longer computation times.
The initial input constraint is an effort to reduce
such discontinuities, although some discontinuity
is unavoidable by this method. Also note that the
same discontinuity is present for the 6 open-loop
optimal state trajectories generated, again with
a likelihood for greater discontinuity for longer
computation times. In this description, initializa-
tion is not an issue because we assume the MPC
computations are already running prior to any
test runs. This is true of the experimental runs
detailed in the results.

4. LQR CONTROLLER DESIGN

For comparison, the MPC approach is compared
to two LQR designs. One is a simple static LQR
controller, designed with the planar ducted fan
model equation (1) linearized around hover equa-
tion (4). The weights chosen are

Q = diag{4, 15, 4, 1, 3, 0.3}, R = diag{0.5, 0.5},

corresponding to the quadratic integrated penalty
on the state and input vectors, respectively. These
are the same weights used in equation (6).

The second design is a gain-scheduled LQR. Us-
ing the full aerodynamic/gyroscopic model of the
ducted fan, equilibrium forces and angle of attack
for forward flight at constant altitude z and for-
ward velocity ẋ are identified. In this case θ is the
angle of attack, and it is possible to linearize the
full model around the forward flight equilibrium
values for ẋ and θ, where the value for all other
states is zero. The gain-scheduling weights chosen
are

Q = diag{1, 1, 15, 30, 4, 0.3}, R = diag{0.5, 0.5}.

The relaxed weights on (x, ẋ) and increased
weights on (z, ż) were chosen specifically to im-
prove stability in the presence of the x disturbance
investigated in the results. Both LQR controllers
require no computational effort; the gain schedul-
ing is done by table look-up on the current θ
measurement.

5. RESULTS

The experimental results show the response of
the fan with each controller to a 6 meter hori-
zontal offset, which is effectively engaging a step-
response to a change in the initial condition for
x. The following subsections detail the effects of
different MPC parameterizations, namely as the
horizon changes, and the responses with the dif-
ferent controllers to the induced offset.

5.1 Varying the Horizon length T

The first comparison is between different MPC
controllers, where time horizon is varied to be 1.5,
2.0, 3.0, 4.0 or 6.0 seconds. Each MPC controller
uses 16 breakpoints. Figure 3 shows a comparison
of the average computation time as time proceeds.
For each second after the offset was initiated, the
data corresponds to the average run time over the
previous second of computation. There is a clear
trend towards shorter average computation times
as the time horizon is made longer. There is also
an initial transient increase in average computa-
tion time that is greater for shorter horizon times.
In fact, the 6 second horizon controller exhibits
a relatively constant average computation time.
One explanation for this trend is that, for this
particular test, a 6 second horizon is closer to what
the system can actually do. After 1.5 seconds, the
fan is still far from the desired hover position and
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the terminal cost CLF is large, likely far from its
region of attraction. Figure 4 shows the measured
x response for these different controllers, exhibit-
ing a rise time of 8-9 seconds independent of the
controller. So a horizon time closer to the rise time
results in a more feasible optimization in this case.
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As noted in §3.2, smaller computation time nat-
urally leads to better tracking performance as
shown in Figure 5. The figure shows the tracking
of θ for the 6 and 1.5 second horizon controllers,
respectively. The dotted lines (o) represent the
computed open-loop optimal trajectories θ∗T and
the solid lines (x) are the measured θ. Disconti-
nuity in θ∗T for T = 1.5 sec reaches 0.25 radians
(t = 2.5 sec) while for T = 6.0 all states are as
smooth as θ∗T shown.

5.2 LQR vs. MPC

Position responses due to the horizontal offset
for the static hover LQR controller, the gain-
scheduled LQR controller and two MPC con-
trollers are shown in Figure 6. The MPC 6.0 sec-
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ond horizon response is the same as in the previ-
ous section. The 1.0 second horizon controller uses
11 breakpoints instead of 16, thereby reducing the
computational demand. The LQR hover controller
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could not stabilize the fan for an offset in x bigger
than 4 meters. The unstable response to the 6
meter offset is shown in the figure as z exceeds
the constraint set of [−1, 1]. In this case, the fan
crashed and then redirected to the desired posi-
tion. All other controllers were stabilizing, with
remarkable similarity between the gain-scheduled
LQR and MPC 1 second horizon controllers. For
the MPC controllers, only the response of the fan
is shown and not the open-loop optimal trajecto-
ries that were being tracked. In reference to Figure
3, the average computation profile for the 1 second
horizon MPC controller with 11 breakpoints looks



like the 3 second horizon controller with 16 break-
points. By reducing the number of breakpoints
and hence the computational demand tracking
is improved. The fan is thus stabilized along a
path much different than the longer horizon path
(observe the different θ responses). Clearly, there
is a highly coupled interaction between horizon
length and the number of breakpoints.

6. CONCLUSIONS

The Caltech ducted fan has been successfully real-
ized as an experimental testbed for real-time MPC
design. The real-time trajectory generation pack-
age NTG made it possible to run MPC controllers
at speeds necessary for closed-loop stabilization of
a system with considerable dynamics and strict
input constraints. Specifically, the thrust vector-
ing mechanism dynamics are modeled as a second
order filter with frequency 4 Hz and the 6 second
horizon MPC controller ran faster than 10 Hz, a
factor of 2.5 times greater than the actuator dy-
namics. Results show the success of different MPC
controllers for stabilizing a step offset in x. A tim-
ing set-up based on “compute as fast as possible”
accounts for nonnegligible computation time as it
affects the application of the repeatedly updated
optimal trajectories. The region of attraction of
MPC controllers is shown to be larger than that
of the static hover LQR controller. Moreover, the
performance of some MPC controllers is close to
that of the gain-scheduled LQR controller.

Extensions of this work could include a parametric
study to better understand the nontrivial cou-
pled relationship between the horizon length and
number of breakpoints. An attempt could also be
made to remove the inner-loop controller on the θ
dynamics. It seems logical to apply a higher den-
sity of breakpoints over the time interval for which
the optimal trajectories are applied. Another re-
cent work (Franz et al., 2002) details a different
timing approach where the full aero/gyro model
is used to estimate the state of the fan T ′ seconds
ahead of its current state, where T ′ can either be
chosen as a constant or can be taken as an average
based on previous runs. The MPC problem is
solved for the predicted state and applied when
time has advanced by T ′ seconds. The work also
considers how different timing approaches influ-
ence current theoretic stability results.
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