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Abstract: Based on a state space dynamic model of a typical automotive driveline, a new
control technique for the dry clutch engagement process is proposed. The feedback controller
is designed following an optimal control approach by using the crankshaft speed and the
clutch disk speed as state variables: a tracking problem is formulated and solved by using
the engine torque and the clutch torque as control variables. The controller guarantees fast
engagement, minimum slipping losses and comfortable lock-up. The critical standing start
operating conditions are considered. Numerical results show the good performance obtained
with the proposed controller. Copyright c

�
2002 IFAC
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1. INTRODUCTION

Recently, the engagement control of automotive dry
clutches is becoming more and more important, due
to the increasing use of Automated Manual Trans-
missions (Link et al., 2001), mainly because it repre-
sents an inexpensive add-on solution on classical (in
European and Latin countries) manual transmission
systems. Several problems related to AMT have been
investigated in the literature, such as gear-shift selec-
tion, AMT actuators, parameter dependence, clutch
engagement strategies in hybrid vehicles (Fredriksson
and Egardt, 2000; Bader, 1990; Lee et al., 1998). In
particular, the engagement of dry clutches is a very im-
portant process both to ensure small facing wear and
good powertrain performance. The engagement must
be controlled in order to satisfy different and some-
times conflicting objectives: small friction losses, min-
imum time needed for the engagement, preservation
of driver comfort. These goals must be reached by ap-
plying a suitable normal force to the clutch driven disk
and by suitably regulating the engine torque during the
engagement phase.

In this framework, one of the most critical operating
conditions for an AMT engagement phase is the start-
up. In fact, during this phase the clutch disk starts
from stop and, in order to reduce fuel consumption and
emissions, it is desired to maintain the engine speed
as closer as possible to the idle speed. Moreover, the
engagement phase during the vehicle launch is very
critical since driveline oscillations can be simply gen-
erated thus drastically influencing the driver comfort.

To this aim, some model-based control strategies have
been recently proposed in the literature (Szadkowski
and Morford, 1992; Ercole et al., 1999; Slicker and
Loh, 1996; Glielmo and Vasca, 2000; Garofalo et
al., 2001; Bemporad et al., 2001; Zanasi et al., 2001).

In this work a finite horizon Linear Quadratic tracking
controller is proposed as an effective solution for the
dry clutch engagement control problem. Numerical
results, carried out by a Simulink/Stateflow simulation
scheme and a realistic set of parameters, show the
good performance of the tracking system, also through
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comparison with controllers previously proposed in
the literature.

2. DRIVELINE DYNAMIC MODEL

2.1 Sixth order model

A typical scheme of the driveline is reported in Fig-
ure 1. � � ���� �
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Fig. 1. Driveline scheme.

The torque produced by the internal combustion en-
gine is transmitted to the driveline by means of the
clutch. During the gear up-shift and down-shift the
force applied to the clutch disk separates the engine
disk and the clutch disk and the engine torque is no
more transmitted to the powertrain until a new engage-
ment starts. Elastic and friction elements in Figure 1
are used to model the mechanical behavior of the
driveline. The whole dynamic model can be obtained
by applying the equilibrium torque condition at the
different nodes of the structure presented in Figure 1.
The dynamic equation of the crankshaft speed (also
called engine speed) ωe can be written as

Jeω̇e & Te ' βeωe ' Tcl ( (1)

where the subscripts ‘e’ and ‘c’ are used for the
engine and the clutch, respectively, Je is the engine
inertia, Te is the engine torque, βe is the crankshaft
friction coefficient, Tcl is the torque transmitted by the
clutch (acting as a load torque for the engine dynamic
subsystem) and, for notational simplicity, the explicit
time dependence has been omitted.

Analogously, the dynamic equation of the clutch disk
speed ωc can be written as

Jcω̇c & Tcl ' kcm
)
θc ' θm *�' βcm

)
ωc ' ωm * ( (2)

where the subscript ‘m’ indicates the mainshaft and
the variables θ are used for the angular positions of
the shafts.

By applying the torque equilibrium condition at the
mainshaft one can write

Jeq
)
ig ( id * ω̇m & kcm

)
θc ' θm *,+ βcm

)
ωc ' ωm *' 1

igid

-
ktw . θm

igid
' θw /

+ βtw . ωm

igid
' ωw /10 (3)

where Jeq
)
ig ( id *2& Jm + 1

i2g

)
Js1 + Js2 + Jt

i2d
* , the sub-

scripts ‘s’ and ‘t’ are used for the synchronizer and
the transmission shafts, respectively, Js1 and Js2 are
the inertia of the two disks connected to the synchro-
nizer, ig is the gear ratio, id is the differential gear
ratio, i.e. ωm & igidωw. Finally, the following torque
equilibrium condition holds at the wheel

Jwω̇w & ktw . θm

igid
' θw /

+ βtw . ωm

igid
' ωw /3' βwωw ' Tload (4)

where the subscript ‘w’ is used for the wheel, Jw is
the inertia which takes into account the wheels and
the remaining parts of the vehicle, βw is the friction
coefficient and Tload is the load torque.

2.2 Piecewise LTI model

When the clutch is engaged the engine speed ωe and
the clutch disk speed ωc are equal since elastic forces
lock the clutch disk to the crankshaft. In order to
model this situation one can add (1) and (2) thus
obtaining)

Je + Jc * ω̇c & Te ' βeωc ' kcm
)
θc ' θm *' βcm

)
ωc ' ωm * ( (5)

since engine and clutch speeds are equal. The switch
from the slipping model (1)-(4) to the engaged model
(5), (3), (4) is determined by the condition ωe & ωc

and the constraint that the clutch torque is smaller than
the static friction torque, so that further slipping is
avoided (we’ll assume that no slipping is possible after
the engagement). In other words, the powertrain can
be modeled as a piecewise linear time-invariant model
whose configurations correspond to the slipping phase
and the engaged phase. In order to represent the whole
system in a compact form, a switching variable can be
defined, similarly to the procedure classically adopted
in order to model switching power electronics con-
verters (Kassakian et al., 1991). By introducing the
switching variable d, equal to 1 when the system is
in the slipping phase and 0 otherwise, the powertrain
model (1)-(4), (5) can be written as

ż &54Asl
)
ig ( id *�6 d + Aeng

)
ig ( id *�6 ) 1 ' d *87 z+54Bsl 6 d + Beng 6 ) 1 ' d *87 v + ΓTload ( (6)

where z &:9 ωe ( ωc ( θc ' θm ( ωm ( θm
igid ' θw ( ωw ; T

,v &)
Te ( Tcl * T the subscripts ‘sl’ and ‘eng’ indicate the

slipping and engaged system matrices, respectively,
and the matrices can be simply deduced from (1)–
(4), (5). Equation (6) is a compact model of the driv-
eline and can be interpreted as an hybrid model. The
commutation from the slipping model to the engaged



one is obtained at each dry clutch lock-up, which is a
state-dependent condition, i.e. ωe & ωc. The opposite
commutation occurs whenever the driver asks for an
up-shift or down-shift of the gear, which can be con-
sidered as an external event.

2.3 Second order models

The possibility to use a simplified model is a very
important step for the clutch controller design. To this
aim, let us assume

ωc & ωm & igidωw (7)

(it is essentially a singular perturbation model reduc-
tion by assuming as “fast” variables the differences of
the angular displacements). By substituting (7) in (2)-
(4) and by adding the resulting equations, the whole
driveline from the clutch disk to the wheels can be
approximated with the first order system

Jv
)
ig ( id * ω̇c & Tcl ' βv

)
ig ( id * ωc ' TL (8)

where Jv & Jc + Jeq
)
ig ( id * + Jw

i2gi2d
, βv

)
ig ( id * & βw

i2gi2d
,

TL & Tload
igid

. Equation (1) models the rotation of the
crankshaft, whereas (8) models the rotation of the
clutch disk, after assuming a rigid driveline (see (7)).
Though equations (1), (8) do not model in detail the
whole powertrain, they capture the main dynamics of
the system under investigation and are simple enough
to design a controller through analytical procedures.

3. CONTROLLER DESIGN

3.1 Control objectives

As already mentioned, the controller must satisfy dif-
ferent objectives (Szadkowski and Morford, 1992).
The fundamental constraint of the clutch engagement
process is the so called no-kill conditions, i.e. one
must avoid the engine stall. This condition can be
modeled by imposing that

ωe
)
t * � ωmin

e (�� t � (9)

A further important condition to be satisfied during
the engagement is the so called no-lurch condition.
A non-smooth engagement process determines a me-
chanical oscillation of the powertrain which should be
avoided in order to preserve the driver comfort. It can
be shown that the driveline oscillations depend on the
time derivative of the slip speed ωsl & ωe ' ωc at the
engagement. In fact, by using (1)-(4) and assuming
that the engine torque and the load torque are continu-
ous at the lock-up time instant, say t̄, the discontinuity
of the clutch speed acceleration at t̄ can be written as
(see the Appendix Afor the algebraic manipulations)

ω̇c
)
t̄ � *�' ω̇c

)
t̄ � * & Je

Je + Jc
ω̇sl

)
t̄ � * � (10)

By using similar algebraic manipulations, it can be
easily shown that for the second order model (1), (8),

the discontinuity of the clutch acceleration at lock-up
can be written so as (10), after replacing Jc with Jv.

In order to obtain a smooth engagement process, the
controller should try to maintain as small as possible
the discontinuity of the clutch acceleration at lock-up,
otherwise undesired oscillations can be excited.

Finally, the energy dissipated during the engagement

Ed & � t̄

0
ωsl

)
t *�6 Tcl

)
t * dt

should be maintained as well as possible.

3.2 LQ controller

In order to maintain as simpler as possible the con-
troller design, the optimal controller will be de-
signed by considering the driveline second order
model (1), (8). The effectiveness of the controller will
be then checked through numerical experiments on the
hybrid sixth order model (6).

The engagement process must be performed in a finite
time, i.e. at a finite time instant t̄ it must be ωe

)
t̄ * &

ωc
)
t̄ * , or, equivalently, ωsl

)
t̄ *2& 0. It is possible to

satisfy this final condition by considering it as a state
constraint. To this aim, the dynamic model (1), (8) can
be rewritten as:

ω̇e & ' βe

Je
ωe ' 1

Je
Tcl + 1

Je
Te ( (11)

ω̇sl & . ' βe

Je
+ βv

Jv
/ ωe ' βv

Jv
ωsl ' . 1

Je
+ 1

Jv
/ Tcl

+ 1
Je

Te + 1
Jv

TL � (12)

From (11)-(12) one can write

ẋ1 & ' βe

Je
x1 ' 1

Je
x3 + 1

Je
u1 ( (13)

ẋ2 & . ' βe

Je
+ βv

Jv
/ x1 ' βv

Jv
x2 ' . 1

Je
+ 1

Jv
/ x3

+ 1
Je

u1 + 1
Jv

TL ( (14)

ẋ3 & u2 (15)

where u1 & Te and u2 & Ṫcl . The time derivative of
the clutch torque has been considered as an input
in order to avoid discontinuity on the clutch torque.
The controller is obtained by applying the Linear
Quadratic control theory to the system (13)-(15). A
tracking controller problem is formulated to achieve
an engine speed reference (which satisfies (9)) and
a slip speed reference. The objective function to be
minimized is

V & 1
2

� t̄

0 �
)
x
)
t *�' x̃

)
t *�* T Q

)
x
)
t *�' x̃

)
t *�*+ u

)
t * T Ru

)
t *
	 dt (16)



where t̄ is an a priori chosen time instant, and Q and
R are two matrices that weight the difference between
actual state trajectory x

)
t * and the desired trajectory

x̃
)
t * ; the engagement must be forced through the final

time constraint x2
)
t̄ * & 0. The control resulting from

the application of this technique has the following
expression:

u
� )

t * & γ
)
t * T x

)
t *,+ ρ

)
t * (17)

where γ
)
t * is a matrix function obtained by the inte-

gration of a differential Riccati equation and ρ
)
t * is a

vector function depending on the initial conditions, the
value of the load torque (considered as a disturbance to
be rejected), and the reference signal x̃

)
t * . The deriva-

tion of the controller law is reported in Appendix B.

In order to show the effectiveness of the controller
and to highlight the undesired oscillatory behaviour of
the driveline, the sixth order dynamic model has been
used in the simulation experiments. Figure 2 shows the

Fig. 2. Simulink scheme implementing the sixth order
hybrid driveline model: the Stateflow ”switching
function” block discriminates between the slip-
ping model and the engaged model.

The reference signals and the weighting matrices Q
and R are chosen so that the control objectives pre-
sented in the previous section are satisfied.

The following realistic set of parameters for a medium
size car have been used to simulate the sixth or-
der model: Je & 0 � 147kgm2, βe & 0 � 03Nms, Jc &
0 � 004kgm2, kcm & 1500Nm, βcm & 1Nms, Jm & 0 � 008kgm2,
Js1 & 0 � 05kgm2, Js2 & 0 � 015kgm2, Jt & 0 � 0005kgm2,
ktw & 20kNm, βtw & 250Nms, βw & 7 � 32Nms and Jw &
166kgm2. The gear ratio for the five different gear po-
sitions can be chosen as 1

ig & )
0 � 256 ( 0 � 35 ( 0 � 5 ( 0 � 75 ( 0 � 95 * ,

and id & 4. The load torque is assumed to be constant
and equal to 10Nm. The numerical results obtained for
a clutch engagement at standing start with the con-
troller proposed in (Garofalo et al., 2001) are reported
in Figure 3 and Figure 4.

The results obtained with the proposed LQ controller
are reported in Figure 5 and Figure 6. The numerical
results show the reduction in the driveline oscillations
after the lock-up and the faster engagement.

The superiority of the LQ control with respect to the
classical PI control becomes more evident under more
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Fig. 3. Engine speed and clutch disk speed during
the engagement; solid (dashed) lines correspond
to the simulation under closed loop (open loop)
control.
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Fig. 4. Engine torque and clutch torque during the
engagement; solid (dashed) lines correspond to
the simulation under closed loop (open loop)
control.
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Fig. 5. Speeds under LQ control.

realistic operating conditions such as a toothed wheel
sensor for the engine and clutch speed measurements
or the dependence of the dynamic friction coefficient
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Fig. 6. Torques under LQ control.

on the slip speed. These problems have been consid-
ered and a lightly modified LQ controller has been
proposed in (Garofalo et al., 2002) in which it is also
shown that PI control cannot guarantee the engage-
ment.

4. CONCLUSIONS

The control of the dry clutch engagement process for
automotive systems has been considered. The pres-
ence of the clutch and, more specifically, its differ-
ent operating conditions during the automotive cycles
(slipping or engaged) makes reasonable the use of a
piecewise linear time-invariant model for the descrip-
tion of the driveline dynamics. A sixth order model has
been considered in order to detect the driveline oscil-
lations after the lock-up, which drastically influence
the driver comfort. A simplified second order model,
which still captures the main driveline dynamics dur-
ing the engagement, has been presented and used to
design the proposed LQ controller. Some numerical
results have shown the improvement achievable by
means of the proposed controller, also through com-
parison with a classical engagement control strategy.

It seems important to say that more realistic operat-
ing conditions (about the measurement of the speeds
and about the friction behaviour) are considered in
(Garofalo et al., 2002) and other problems such as
thermal effects, damper spring nonlinearity or more
realistic constraints on the engine torque are object of
current investigation by the authors.
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Appendix A. ACCELERATION DISCONTINUITY

In this appendix we show how it is obtained (10).
Since after the lock-up ωe & ωc, from (5) one can
write:



ω̇c
)
t̄ � *�' ω̇c

)
t̄ � * & 1

Je + Jc � Te
)
t̄ � *�' βeωc

)
t̄ � *' )

kcm
)
θc ' θm *,+ βcm

)
ωc ' ωm *�*� ��� �

T2

7
' ω̇c

)
t̄ � * ( (A.1)

where for notational simplicity the dependence on ig

and id has been omitted. Since the engine speed is
continuous at lock-up one can substitute ωc

)
t̄ � *2&

ωe
)
t̄ � * in (A.1) with ωe

)
t̄ � * and compute ωe

)
t̄ � *

from (1), thus obtaining

ω̇c
)
t̄ � *�' ω̇c

)
t̄ � * & 1

Je + Jc � Te
)
t̄ � *,+ Jeω̇e

)
t̄ � *+ Tcl

)
t̄ � *�' Te

)
t̄ � *�' T2

)
t̄ � *
	' ω̇c

)
t̄ � *�' Je

Je + Jc
ω̇c

)
t̄ � *

+ Je

Je + Jc
ω̇c

)
t̄ � * (A.2)

Now, by assuming Te
)
t̄ � * & Te

)
t̄ � * , one can write:

ω̇c
)
t̄ � *�' ω̇c

)
t̄ � * & Je

Je + Jc
ω̇sl

)
t̄ � *

' 1
Je + Jc � Jcω̇c

)
t̄ � *�' Tcl

)
t̄ � *+ T2

)
t̄ � *
	 (A.3)

By considering (2) and by assuming Tcl
)
t̄ � * & Tcl

)
t̄ � *

and T2
)
t̄ � * & T2

)
t̄ � * one obtains (10).

Appendix B. OPTIMAL CONTROL TRACKING

The system (13)-(15) can be rewritten into the follow-
ing compact form

ẋ
)
t * & Ax

)
t *,+ Bu

)
t *,+ Γ (B.1)

where we assumed the load torque to be constant (in
the vector Γ). Using the Hamiltonian approach and
the so called adjoint equation it is simple to show that
solving the minimization problem

u
� )

t * & argminV (B.2)

with V given by (16), subject to (B.1) with x
)
0 * & x0

and x2
)
t̄ * & 0, corresponds to solving the following set

of differential equations (Bryson and Ho, 1975)�
ẋ
)
t * & Ax

)
t *�' BR � 1BT λ

)
t *,+ Γ

λ̇
)
t * & ' Qx

)
t *�' AT λ

)
t *,+ Qx̃

)
t * (B.3)

with the set of conditions

x
)
0 * & x0 ( x2

)
t̄ * & 0 ( λ1

)
t̄ * & 0 ( λ3

)
t̄ * & 0 �

(B.4)
Some of the conditions (B.4) are given at the initial
time instant and some at the final one t̄. Moreover
λ2
)
t̄ * ( x1

)
t̄ * and x3

)
t̄ * are not given and the controller

must also take into account the presence of the vector
Γ in (B.1). Both these problems can be solved by
imposing

λ
)
t * & P

)
t * x ) t *,+ m

)
t * ν + h

)
t * ( (B.5)

ψ & g
)
t * x ) t *,+ f

)
t * ν + k

)
t * (B.6)

where ψ & x2
)
t̄ * , ν & λ2

)
t̄ * , P

)
t * is the matrix that

solves the Riccati equation, h
)
t * has been introduced

in order to compensate for the presence of the dis-
turbance vector Γ and to solve the tracking problem,
m
)
t * is used to solve the problem of the unknown final

condition λ2
)
t̄ * . By computing (B.5)-(B.6) at t̄ one

obtains that P
)
t̄ * , h

)
t̄ * , f

)
t̄ * and k

)
t̄ * must all be zero

and

m
)
t̄ * &�� 0 1 0 � T ( g

)
t̄ * &�� 0 1 0 � ( (B.7)

By substituting (B.5)-(B.6) in (B.3), after simple al-
gebraic manipulations one obtains the following three
matrix differential equations:

' Ṗ
)
t *�' AT P

)
t *�' P

)
t * A + P

)
t * BR � 1BT P

)
t *�' Q & 0 (

(B.8)

P
)
t * BR � 1BT m

)
t *�' ṁ

)
t *�' AT m

)
t * & 0 ( (B.9)

P
)
t * BR � 1BT h

)
t *�' P

)
t * Γ ' ḣ

)
t *�' AT h

)
t *,+ Qx̃ & 0 (

(B.10)

which can be solved backward in time from the above
terminal conditions. Now, by differentiating (B.6) we
have

ġ
)
t * x ) t *,+ g

)
t * ẋ ) t *,+ ḟ

)
t * ν + k̇ & 0 ( (B.11)

and, by using (B.3)

� ġ
)
t *,+ g

)
t * A ' g

)
t * BR � 1BT P

)
t *
	 x ) t *,++ � ḟ ) t *�' g

)
t * BR � 1BT m

)
t * 	 ν + k̇

)
t *' g

)
t * BR � 1BT h

)
t *,+ g

)
t * Γ & 0 (B.12)

that holds for any x
)
t * and ν. Therefore

ġ
)
t *,+ g

)
t * A ' g

)
t * BR � 1BT P

)
t * & 0 ( (B.13)

ḟ
)
t *�' g

)
t * BR � 1BT m

)
t * & 0 ( (B.14)

k̇
)
t *�' g

)
t * BR � 1BT h

)
t *,+ g

)
t * Γ & 0 ( (B.15)

which allow to determine g
)
t * , f

)
t * and k

)
t * . From

(B.13), (B.9) and the final conditions on g
)
t * and m

)
t * ,

one can conclude that g
)
t * & mT ) t * . From (B.6), since

ν is a constant one obtains

ν & f � 1 ) 0 *,4ψ ' g
)
0 * x ) 0 *�' k

)
0 *87 � (B.16)

Finally the control variable u
� )

t * has the following
expression,

u
� )

t * & ' R � 1BT λ
)
t *& ' R � 1BT P
)
t * x ) t *�' R � 1BT 4m )

t * ν + h
)
t *87 (

(B.17)

where P
)
t * , m

)
t * , ν and h

)
t * can be obtained as de-

scribed above.


