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Abstract: This note presents two coupled Lyapunov-like conditions under which a
linear discrete-time system can be stabilized by static output feedback. The originality
of these conditions is their relation to the well-known coupled Sylvester equations that
describe both the (A, B) and (C, A)-invariance of a subspace. For systems verifying
Kimura’s condition, we show that output feedback stabilizing gain matrices can be
computed through the successive resolution of two standard convex programming
problems. Numerical results are provided to show the effectiveness of the proposed

approach. Copyright (©2002 IFAC

Keywords: Output Feedback, Stabilization, Invariant Subspaces, Lyapunov

Equations, Convex Programming.

1. INTRODUCTION

1A common feature shared by different meth-
ods to treat the static output feedback stabi-
lization problem of linear systems is that it is
equivalent to obtaining solutions of coupled sets
of matrix equations (Castelan et al., 2000). In
particular, through the use of coupled Sylvester
equations (Syrmos and Lewis, 1993) (Syrmos and
Lewis, 1994), the output feedback stabilization
problem can be decomposed into two stages: (i)
determination of a (C, A)-outer detectable sub-
space, an (i4) inner stabilization of this subspace.
Thus, when the number of inputs, m, plus the
number of outputs, p, is greater than the number
of states, n, known as Kimura’s condition (m +
p > n) (Kimura, 19% ), the Sylvester equations
involved in the two stages can be solved by stan-
dard eigenstructure assignment techniques.

This paper extends to the case of discrete-time
systems the results presented in (Castelan et
al., 2000) for continuous-time systems. It is shown

! This work has been partially supported by CNPq/Brazil.

that the above mentioned geometric approach
based on the solution of coupled Syslvester equa-
tions has a quadratic counterpart, so that coupled
linear matrix inequalities and equalities can also
be used for construction of an output stabilizable
(C, A, B)-invariant subspace as an intermediate
mechanism in the process of designing a static
output feedback. The quadratic characterization
of both stages by Lyapunov equations provides
a convenient framework for the numerical reso-
lution of the problem through standard convex
programming. In particular, we show that the
first stage can be accomplished through the solu-
tion of a reduced-order strict LM I. The proposed
problem decomposition as two subsequent convex
programming problems may be also convenient, for
the integration of some additional performance
and robustness requirements represented in the
form of Ms

The second section of the paper presents the key
result that links the solution of the static out-
put feedback stabilization problem to the coupled
Sylvester equations and decomposes the basic so-
lution into two steps. In the third section, the



equivalent quadratic characterization is obtained.
Then, section 4 is devoted to the presentation
of the proposed algorithm, based on the use of
orthogonal transformations and convex program-
ming solutions of LM Is. In section 5, numerical
examples are reported to illustrate the effective-
ness of the proposed approach. We finally present
some concluding remarks.

2. PRELIMINARIES

The considered linear discrete time-invariant sys-
tems are described by

Tpy1 = Az + Bug (1)

yr = Cxy, (2)

where: x € " , u € R™ , y € RP. Tt is also
assumed that B is full column-rank, C is full
row-rank and that (C, A, B) is stabilizable and
detectable. The studied problem is to find a static

output feedback control law uy = Ky, such that
the closed-loop system

Zp+1 = (A + BKC)zy, (3)
is asymptotically stable, i.e. its spectrum satisfies:
0(A+ BKC) = {A1,A2,...,A\,} with,
fori=1,..,n, M €eC’={Ae(C;|\ <1}
The following basic result relates the existence of

a stabilizing output feedback to the solution of
two coupled Sylvester equations.

Theorem 2.1. There exists a static output feed-
back K : 7 — R™ such that o(A+ BKC) € C*®
if and only if the following conditions hold true
for some matrices (Hy € RV*V, V € R*"*V Z, €
%mxv, Hr € %n—vxn—v, T € §):En><(n—v)7 Ir €
RP*7=?) and for some positive scalar v < n:

AV —VHy =—BZy , with o(Hy)€e C*(4
T'A— HyT'=-ZLC , with o(Hr) €C® (5
T'V =0 6
Ker(CV)C Ker(Zy) (7
Ker(B'T) C Ker(Z7) 8

— N ~— ~— ~—

where: rank (T') = n — v and rank (V) =v. O

The above result has been presented and exploited
under different forms in the literature related to
the eigenstructure assigment by output feedback
(see (Syrmos et al., 1997)). The equations (4) to
(5) are recognized as coupled Sylvester equations.
Under the stability constraint imposed on matrix
Hy, (4) means that V = I'm(V) must be a (A, B)-
inner stabilizable subspace, that is there exists F'

such that (A+ BF)|V is stable. Dually, (5) means
that Ker T' has to be a (C, A)-outer detectable
subspace, that is there exists L such that (4 +
LC)|(R™/Ker T') is stable.

Under the coupling condition (6), (4) and (5)
mean that V = Ker T' is an Output Stabiliz-
able (C, A, B) invariant subspace, as defined in
(Syrmos and Lewis, 1994). Notice also that inclu-
sions (7) and (8) can be equivalently replaced by:

KCV = Zy (9)
T'BK = 7}, (10)

From the above remarks we see that the state-
ment of theorem 2.1 is essentially equivalent to
the one of theorem 3.2 stated in (Syrmos and
Lewis, 1994). For algorithmic purposes, we spe-
cialize the design to the case where V =Im V is a
p-dimensional subspace. This assumption has also
been adopted in many other works that, explicitly
or implicitly, use the coupled-Sylvester equations
for eigenstructure assignment by output feedback
(Alexandridis and Parakevopoulos, 1996) (Syrmos
and Lewis, 1993) (Fletcher et al., 1985). Its main
advantage is to provide a straightforward solution
to equation (9). Thus, based on the conditions of
theorem 2.1, the following procedure generically
leads to a stabilizing output feedback when the
Kimura’s condition n < m + p is verified (Syrmos
and Lewis, 1993) :

Step 1: Find a matrix T € R"*" P verifying (5),
and such that

!

rank [T

C] =n< Ker T'N Ker C = {0}(11)

Step 2: Solve (4), taking into account that V
must verify (6) and rank(V) must be equal to p.
Step 3: By construction (11) guarantees that
rank(CV) = p and K can be computed by:

K=2Zy(CV)™! (12)

Steps 1 and 2 can be solved by using standard
eigenstructure assignment techniques. In particu-
lar, once T has been found, step 2 can be solved
by using the ”zero equation”:

)l e

where v; and z,;, ¢ = 1,...,p, form the columns
of V and Zy, respectively.

Remark 2.1. To guarantee that the eigenvalues \;
of step 2 are freely assignable, the system matrix

P()\) = [A ;,AI g] must have full normal row



rank: rank(P())) = 2n — p, Y A. Otherwise the
system (A,B,T') has invariant zeros, in which
case they must be used to obtain the (A4, B)-
invariance of KerT'. The genericity of the above
procedure relies on the fact that, for m +p > n,

P(X\) does not lose rank for almost all triples
(A,B,T") (Syrmos and Lewis, 1993).

Remark 2.2. In the case m+p = n, P()) is square
and almost all triple (A, B, T") has p finite invari-
ant zeros (Syrmos and Lewis, 1993). Thus, the
basic procedure can produce stabilizing solutions
in this more difficulty case only if 7" found in
step 1 generates p minimum-phase invariant zeros,
which have to be used to solve (13) (Castelan
and Hennet, 1993). However, to our knowledge,
no systematic procedure exists for the search of
a good T, although a ”try-and-error” search may
be carried-out.

3. COUPLED MATRIX INEQUALITY
CONDITIONS

A quadratic characterization of Theorem 2.1 can
also be obtained by replacing the stability con-
straints on matrices Hy and Hr by the fol-
lowing equivalent conditions that are obtained
from Schur complement applied to the classi-
cal discrete-time Lyapunov stability conditions
(Crusius and Trofino, 1999):

-1 IH, ] _
H{TIHy -1 <0 [an —H]__le
>0 Qv =Qy >0 (14)
I=0"'>0
-T THr)| _
HiTH —T <0 [H'Tr —r]__%g
{f>0 Qr=qy>0 19
r=r"'>o0

Theorem 3.1. There exists an output feedback
K : ® — R™ such that (A + BKC) € C%, if
and only if the following conditions hold true for
some full rank matrices T € R"*"~ Y, V € R**?,
with v > 0, such that T'V = 0:

(i) 3P =P' >0,P € R™*", W € R™*,

P  PA'+W'B' _
AP+ BW —-P -
Vo V' o
Lot v o
V'PV >0; T'PT =0 (17)

W = ZpV' for some Zp € R™* (18)

(i) AS = ' > 0,5 € R ¥ € RO,

—S  SA+YC] _
As+Cy -5 |7
7o), [T 0
[0 T]QT[O T’] (19)
T'ST>0; V'SV =0  (20)

Y =TZ for some Zp € RP*"Y (21)

(tit) Ker CPC Ker W (22)

Ker B'SC Ker Y’ (23)

Proof (outline):

Necessity: Consider that K is a stabilizing output
feedback and, hence, that the conditions (4) to (5)
of theorem 2.1 are all verified.

By recalling that the quadratic stability condition
(14) holds true, we obtain:
Vol[-mma,][V' 0
0w L | [0 v
_ [ -vav’ VHH(,V’] <0
~|VHyIIV! vV | =
Then, condition (16) is obtained using AV +
BZy = VHy, setting Zy = Zyll, P = P' =
VIIV! and W = ZpV'.

Now, condition (17) is obtained considering that

V'vIiv'v > 0

rank(V) = pand that I > 0 = { TVIV'T = 0 °
Using similar arguments, we can show the neces-
sity of part (i%):

TO - THr | [T ©
o) [mr ] [ 2]

_ [ ~TTT' TI‘HTT'] <0

~ |THT' -TTT' | =

Thus, by using T'A + ZL.C = HyT', and setting
S =TIr'T" and Y = TTZ}, we obtain (19) and
(21). Furthermore, since rank(T) = n—vandI' >

0 lso h T'TTT'T >0
s we also have 1y
condition (20).

Necessity of (22), (23) is derived from (7), (8), re-
spectively, and from the definition of the matrices
involved in these conditions.

, corresponding to

Sufficiency: For simplicity of the presentation
we show only that the verification of part(i) is
equivalent to the (A, B)-inner stabilizability of the
subspace V = Ker T'. We first have:

V/
TI

plvr]= [?g] >0, P=P">0 (24)

Thus, we can decompose P as:

00| |1
O=0I=V'V'V)'PV'V)"'V >0 (26)

P=[VT] [HO] [V'

>0 for (25)
|



From (22), there exists a matrix K such that:

KCP=W (27)

Thus, by substituting (27) into (16), we get

P P(A+BKC)] _ A
[ (A+BKC)P  -P =-Qv (2§)
where Qy €  R2*2n  ig  defined from
Qv lezl] ~
= b =
Qv Qvar Qva2 y o Qv
Qvi1 0 Q%/zl 0 \%
vV T 0 0 0 0 i
[ 4 T] Qva1 0 Qva22 0 V,I
0 0 0 0 T

Taking into account (26) and the similarity equa-
tion:

z‘:ln 1‘112

(A+BKC)[V T] = [V T] [An An]( 9)

we obtain from (28):

|00 0 0
ApIl 0 _[mo
AnIl 0 100

Qvi1 0
0 0
Qva1 0
0 0

o [HA’M HA’Zl]

Qy2 0
0 0
Qvae 0
0 0

(30)

By construction, IT > 0, thus from (30), A}, = 0,
which implies that V = ImV is a (A + BKC)-
invariant subspace. And also from (30),

—I1 T4y, | _
[Azln I ] = Qv <0

which means that the restriction of (A + BKC)
to V =1ImV is stable. O

Remark 3.1. For any pair of matrices (P, S) solu-
tion to parts (¢) and part (i), the coupling con-
dition between the given matrix inequality condi-
tions (16) and (19) can be restate as Ker S =
Im V = Im P, or, equivalently: SP = 0. The
coupled matrix inequality conditions (i) and (ii),
together with this condition show how the geomet-
ric approach and Lyapunov conditions have been
combined in our approach.

4. AN ALGORITHM FOR OUTPUT

FEEDBACK STABILIZATION

Theorem 3.1 gives a necessary and sufficient con-
dition for the existence of a stabilizing output

feedback. Unfortunately, this result involves cou-
pled matrix inequality conditions that are non-
convex in the considered decision variables T,
V, P and S. However these conditions may be
used to adequately construct Output Stabilizable
(C, A, B)-invariant subspaces that lead to stabiliz-
ing output feedback matrices K. As in the eigen-
structure assignment approach presented in sec-
tion 2 (Syrmos and Lewis, 1993), this can be done
by taking into account the coupling requirement
and solving subsequently part (i7) and part (¢) of
theorem 3.1. The following procedure is proposed
to compute a stabilizing output feedback when
m+p>n 2.

Step 1:

e Find an orthogonal decomposition C' [ My M, | =

[Cy 0], where C; € RP*? is non-singular,
Ay M,
and set [A;;] = [ME]AMz;
e Solve the reduced-order (strict) LMI con-
dition below to find Sy; € R P*P and

Sop € RN—PXN—P, S5 >0 and
—S22 S22 A22 + S21A12
<0 (31
[A'22522 + A58y —S22 ] 8D

!
e Define T = [521 522] [%&]
2

Step 2:

e Compute V from (6) as an orthogonal basis
of Ker T', i.e: V'V = I;

e Solve conditions (16), (17) and (18) to find
P, W and ZH .

Step 3 : Compute the stabilizing output feedback
matrix as the unique solution of:
KCP=W <= KCVP =Zy, since V'V =1I,,.

Remark 4.1. In step 1, a candidate matrix T is
constructed such that KerT' N KerC = {0} .
In the basis formed by the columns of matriz
M = [ My M,], the open-loop system takes the

form

Ty An A | (o By
= + 32
a)-L] ]+ [2] e

_ T

y=[ C1 0] [m] (33)
where the matrices involved have the appropri-
ate dimensions. As shown in (Chen, 84), the
detectability of the pair (C,A) implies the de-
tectability of the pair (A2, A22). Thus, a feasible
solution to LMI (31) can always be find. Let
Ly € R PXP be such that Sesls = Sy; and
consider a Choleski decomposition of Sy5 given by:
Saa = TaT5. Since, by construction Lo stabilizes

2Ifm+p = 7 < n, a dynamic compensator of order
v > n — P can be considered to recover this condition.



(A22 + Lo Ay5), we can define Hr € C® from the
similarity relation

T2 (A22 + L2A12) = HTT2 (34)
Furthermore, since C} is invertible, a matrix Zr €
Rp*(n=P) can always be computed from:

ZypCy = — (ToLaAn1 + To Ay — HrTh) (35)

where: T = T>L,. Hence, (34) and (35) can be
equivalently replaced by

An A
T T —Hr | Th T | =
(1] |4 4| - (1 m)
—Zp[C1 0], with o(Hr) € C*. (36)
. [T [T [ M
By constructlon,[c] = [01 0] [Mé . Thus,
!
rank [g] =n <= KerT'nKerC = {0}.

Furthermore , let I' = I > 0 be a solution to (15).
Thus, the following matrices Y and S > 0 verify
(16),(17) and (18) for Y =TZ,T ;

Si1 S M! .
S=[M M) [S; Sz;] [M;] , with
S Sy | _[Th
[521 al=|m|rmr.

Remark 4.2. Step 2 is used to solve the set of
conditions for V = KerT’'. Recall that these
conditions are generically solvable in the sense
that when m + p > n, P()\) has full row rank
for almost all triples (A, B,T") (remark 2.1).

Remark 4.3. The decomposition for step 1 is not
unique. The set of all decompositions can be
obtained from a chosen orthogonal matrix M by

D _
CMD =C[M; M,] [D;l 122] =[Cy 0]37)

for all non-singular matrices D; € RP*P, Dy €
RPPX"~P_ For instance, in the unfrequent cases
where step 2 fails, a new basis (not necessarily
orthogonal) can be constructed by M"™ = MD;
the new detectable pair (A}, A%,) satisfies:

Aty | _ | DT 0 Az | b,
A3, ~Da1 Dy | | A2

_ . Dyt A Dy
(D5 " A2z — D21A21)D>

with Dy; = D3'Do;Dy'. In this way, other
solutions to step 1 can be found so that step 2
becomes feasible.

Finally, it is worth recalling that stabilizing so-
lutions can also be computed from the use of

the dual system (A’,C',B’). In addition, stan-
dard convex programming techniques can be
used to find feasible solutions for the considered
Lyapunov-like conditions and also to include some
additional.

5. NUMERICAL EXAMPLE

The numerical examples reported in this section
were solved with Scilab (INRIA, France). Stan-
dard convex programming techniques have been
applied to find feasible solutions for the coupled
Lyapunov-like conditions.

The first 1 000 random triples (A4, B, C) generated
with unstable A verify the Kimura’s condition
m+p > n, with n = 5, m = p = 3. The
basic procedure computed stabilizing solutions in
99.6% of cases. In the other 4 examples, only
one iteration was necessary to obtain a stabilizing
solution; this iteration was carried out using Re-
mark 4.3, with D = L 0
D21 In—p
matrix Ds;. Thus, under the Kimura’s condition,
the algorithm was always successful and had a
performance comparable to the performance re-
ported in (El Ghaoui et al., 1997) for the cone
complementarity linearization algorithm.

] , with a random

Some computational experiments have also been
carried out for the less restrictive case m + p = n,
with; n = 4, m = p = 2 (see Remark 2.2). For
20 random triples (A, B,C) the basic procedure
computed stabilizing solutions in 50 % of cases.
Once more, only one iteration was necessary to
produce a stabilizing solution, for each one of the
remaining 10 examples. These results also show
that the approach may be effective when Kimura’s
condition is not verified.

The objective of the next example is to show
the numerical results obtained at each step. The
following model has been obtained from a dis-
cretization of the system studied in (Fletcher

1.0502  0.3551 0 0
. _ | 03851 1405400 _
et al, 1985): A = | 400 o502 10| @ B =
0 001
0 01 o
. ,C = ]0010]|, with open-loop
~0.0049 0 0001
0 03

spectrum o(A) = {1; 1.6248; 0.8308; 1}. The
corresponding triple (C, A, B) is controllable and
observable and m + p = 5 > n. Using an orthog-

onal matrix M that performs step 1, a matrix
!

T' = [ S S ] [Ml] is readily found :

M,
—0.7071 0 0 —0.7071
7" =[10.1868 0.1611 0.1585 | 0_707(1) g 7(1) _0_707(1)
01 0 0



= [70.5932 0.1585 —0.1868 70.8210].

—0.7879 —0.1793 0.1521
0.0764 0.0174 0.9853
—0.0900 0.9795 0.0174
0.6044 —0.0900 0.0764

It implies, in step 2: V =

A feasible solution for the second part of step 2 is
then found by minimizing the trace of matrix P:
0.5630 —0.3142 0.3740 —0.5525

P g3 | 0-3142 14728 0.7512 0.3403
- 0.3740 0.7512 1.8026 —0.5354 |’
—0.5525 0.3403 —0.5354 0.5867
W 10-3 | —0-3647 —3.8352 —1.9805 0.1183 |
- 0.3027 —1.3523 —0.5114 —0.3634 |’
0.4018 —1.9160 —3.8899
— -3
Zn =10 [0.5153 —0.5460 1.3230] '

The corresponding stabilizing output feedback,

K | —214364 —3.5090 17870 L
= | —4.1273 —1.0505 —1.3373 |’ BVES:

o(A+ BKC) = {0.1355; 0.0098; 0.8056 & 0.1336i}.

where the eigenvalue 0.1355 corresponds to step
1.

6. CONCLUDING REMARKS

Stabilization of linear systems by static output
feedback is recognized a basic and still open prob-
lem in control theory. A review of existing ap-
proaches and techniques to treat different ver-
sions of this problem can be found in (Syrmos
et al., 1997); other recent results not covered by
this survey paper are, for instance, (Alexandridis
and Parakevopoulos, 1996), (Crusius and Trofino,
1999), (Geromel et al., 1998), (El Ghaoui et
al., 1997) and (Castelan et al., 2000).

The present paper has extended the results re-
ported in (Castelan et al., 2000) to the case of
discrete-time systems. The basis of the study has
been the coupled Sylvester equations approach,
often used in the eigenstructure assignment litera-
ture. From these equations, a quadratic approach
based on the solution of two-coupled Lyapunov-
like conditions has been obtained.

The effectiveness of the proposed algorithm has
been shown through numerical examples for cases
where the Kimura’s condition are verified. Thus,
stabilizing solutions can also be used in the cases
where this condition is not verified by using
dynamical compensators that recovers Kimura’s
condition for the associated augmented system.

The use of the proposed approach to integrate
additional closed-loop performance requirements
and also to solve less restrictive cases are the
subject of underlying researches.
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