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Abstract: In this paper, the linear quadratic optimal control problem for multiparam-
eter singularly perturbed systems (MSPS) is studied in a different approach from the
existing methods. The attention is focused on the design of a near—optimal controller
which does not depend on the values of the small unknown parameters. It is shown
that the resulting controller achieves O(||u|?) approximation of the optimal cost for
the special case of the fast subsystems compared with the existing results. Moreover,
it is also shown that the resulting controller is equivalent to the existing composite

controller.
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1. INTRODUCTION

The deterministic and stochastic multimodeling
stability, control, filtering and dynamic games
have been investigated extensively by several re-
searchers (see e.g., Khalil and Kokotovié¢, 1978,
1979; Coumarbatch and Gaji¢, 2000; Gaji¢, 1988;
Wang et al., 1994). The multimodeling problems
arise in large—scale dynamic systems. For exam-
ple, these multimodel situations in practice are
illustrated by the multiarea power system (Khalil
and Kokotovi¢, 1978). In order to obtain the op-
timal solution to the multimodeling problems, we
must solve the multiparameter algebraic Riccati
equation (MARE), which are parameterized by
the small positive same order parameters €;, j =
1, 2, ---. Various reliable approaches for solving
the MARE have been well documented in liter-
atures (see e.g., Coumarbatch and Gaji¢, 2000;

Mukaidani et al. 2002). However, these results are
limited to the case that the small parameters are
assumed to be known. Thus, it is not applicable
to a large class of problems where the parameters
represent small unknown perturbations whose val-
ues are not known exactly.

A popular approach to deal with the MSPS is
the two—time-scale design method (see e.g., Khalil
and Kokotovi¢, 1978, 1979; Gaji¢, 1988; Kokotovié
et al., 1986). For example, optimal control of a
class of the MSPS has been studied by Khalil
and Kokotovi¢ (1979), where the design of the
¢;-independent reduced-order controller has been
suggested. When ¢; is very small or unknown
the previously used technique is very efficient. In
Wang et al. (1994), using the descriptor variable
approach, the main results of Khalil and Koko-
tovié (1979) have been improved for the nonstan-



dard MSPS such that at least one of the fast state
matrices is singular. However, the existing con-
trollers proposed in Wang et al. (1994) and Khalil
and Kokotovi¢ (1979) only achieve O(|u||) (where
w= [51 €9 ]) approximation of the optimal cost.

In this paper, we study the linear quadratic opti-
mal control problem for the MSPS. For this pur-
pose, we first investigate the unique and bounded
solution of the MARE and establish its asymp-
totic structure. Using the asymptotic structure,
a new near—optimal controller which does not
depend on the values of the small parameters is
obtained. This is done by eliminating the param-
eters ¢; for the full-order controller. It should be
pointed out that the design method proposed in
this paper is quite different from the two-time—
scale design method and the descriptor variable
approach (Wang et al., 1994). As a result, we
have only to solve the algebraic Riccati equation
(ARE) with same order dimension of the reduced—
order slow and each fast systems which do not
depend on the values of the small parameters. It is
emphasized that the resulting controller achieves
O(]|?) approximation of the optimal cost for the
special case of the fast subsystems compared with
the previously proposed controller in (Khalil and
Kokotovié, 1979; Wang et al., 1994). Even if the
parameters are unknown, when the parameters
are sufficiently small, the proposed near—optimal
controller can be used reliably for the MSPS. As
another important feature, when the fast state
matrix Aj; is nonsingular, we show that the re-
sulting controller is equivalent to the composite
controller which is based on the two-time-scale
design method. Therefore, we claim that the new
near—optimal controller includes the existing one
as a special case.

2. THE MSPS

We consider the linear time-invariant MSPS

Zo(t) = Apoxo(t) + Ao1z1(t) + Agaxa(t)
+Bo1ui(t) + Bozua(t), z0(0) =), (la)

e141(t) = Aroxo(t) + An1z1(t) + c12A1222(t)
+Buu(t), 1(0) = =7, (1b)

€29(t) = Agoxo(t) + e21 A1 21(t) + Asxa(t)
+Bagus(t), x2(0) = a9, (1c)

where z; € R, j =0, 1, 2 are the state vectors,
u; € R™, j =1, 2 are the control inputs. All
the matrices are constant matrices of appropriate
dimensions.

€1 and €9 are two small positive singular parame-
ters of the same order of magnitude such that

E —
aE—1§k12<oo. (2)

< Elz < &2

That is, we assume that the ratio of 1 and &5 is
bounded by some positive constants k;, and kqa.
€12 and 97 are two weak coupling between the fast
subsystems. Note that the coupling parameters
€12 and €91 can be positive, negative or zero. We
note that the fast state matrices A;;, 7 =1, 2
may be singular. In the optimal control of the
above MSPS, the performance criterion is given

J= % / (@)=t (3)
0
zo(t)
’U,l(t)
2(6)=C | z1(t) | + D v Cz(t) + Du(t)
x2(t) [ Q(t)]
where

C = [Clo Cn 0 ]

Cyp 0 Cy
Qoo Qo1 Qo2
CTC=Q:=|Qy Qu 0 |,
Qlz 0 Qo
Th_p._ |10 Tr _
D D_R._[O RQ] ~0, CTD =0.

It is well known that the solution of the linear
quadratic control problem (1) and (3) is given by
(Khalil and Kokotovi¢, 1978; Coumarbatch and
Gaji¢, 2000),

topn () = [z;gg] = —RBTPa(t), (4)

where P, satisfies the MARE

AZP6+PeAe_PeSePe+Q:0’ (5)
with
AOO A01 A02
Aci=|er Ao &' A el terndio
e5 ' Aog e5 en1 Aoy 5  Ago
€ R™™ fi:=ng+ny + no,
Soo €1 So1 €5 S0z
Se:=B.R'BF = | 7181 725, 0
e5'Sh 0 58
c Rﬁxﬁ
Bo1 Boa
Be:=|e'Bin 0

0 52_1B22
e R™™ 1w :=mq + mo.

Moreover, the optimal cost is given by



Topt = %x(O)TPex(O). (6)

If we know the values of the small parameters
€1, €2, €12 and €91, this optimal control problem
could be solved (Coumarbatch and Gajié, 2000;
Mukaidani et al. 2002). However, it is impossible
to obtain the optimal control when the small
parameters are unknown. In such cases, the exact
controller (4) cannot be used.

A near-optimal control design for the MSPS has
been proposed in Khalil and Kokotovi¢ (1978,
1979). The algorithm consists of solving three
separate subproblems, one in a slow time scale
and two in fast time scale, and then combining
the solutions of these problems to form a compos-
ite controller. However, in order to separate the
MSPS the nonsingularity of the matrices A4;;, j =
1, 2 are required. To avoid these assumptions we
propose a new design method, which is based on
the approximate theory in a different approach
from the composite design.

3. THE MARE

Before we present the near—optimal controller, we
first introduce the asymptotic structure for the
MARE (5). A solution P, of the MARE (5), if it
exists, must contain the parameters ¢;, j =1, 2
because the matrices A, and B, contain the EJ-_L
order parameter. Taking into account this fact, we
look for a solutions P, of the MARE (5) with the
structure

P()() Elpf;) EQPQZE) o
P.:=|ePyy ePi1 (E1e2Py; | € RV(T)
€aPy \/e1e2Po1  €2Fan

T T T
where POO = POO’ P11 = Pll) P22 = P22.

It is assumed that the limit of a exists as &
and €9 tend to zero, that is (see e.g., Khalil and
Kokotovié, 1978, 1979)

a= lim a. (8)
e1—+0
go——+0
Furthermore, without loss of generality, the fol-
lowing assumptions are made (Wang et al. 1994).
Assumption 1: The triples (4;;, Bjj, Cjj), j =
1, 2 are stabilizable and detectable.

Assumption 2:

[ I, — Aoo —Aor —Ao2 Bo1 Boz
rank —Aqp —Aq 0 By O =n,
| —A2 0 —Axx 0 Bx
[ 51, —Ago _AlTo _AQTO ClTo CQTO
rank —Agl —AlT1 0 C'lT1 0 | =n,
— AL, 0 —-Al, 0 0F

where Re[s] >0, se C.

Assumption 3: The Hamiltonian matrix Tj;, j =
1, 2 is nonsingular, where

Ai —S.s
T .= 3 i |
! [—ij —AJ'Tj]

Let p()(), Pl(), Pgo, Pll; Pgl and p22 be the hmltll'lg
solutions of the MARE (5) ase; — +0, j =1, 2,
€12 — 0, e21 — 0, then we obtain the following
equations under the assumptions 1-3.

AT Py + PooAs — PooSsPoo + Qs =0, (9a)
15]% = PyoNoj — Mo;, (9b)
AJ;Pjj + PjjAj; — PjjSiiPij + Q5 = 0,(9c)
Py =0, (9d)

j =1, 2, where

Ay = Ago + Noi A1o + No2 Az + So1 Mg,
+Soa Mgy + No1S11 My + No2Saz M,
Ss 1= Soo + No1Sgy + So1Ngy + No2SGz
+S0a Ny + No1 S11 NGy + No2Saa2 Nos,
Qs = Qoo — Mo1 Arg — AJpMg, — Moz Az
— Ao Mgy — Moy S11 Mgy, — Moz Sa2 Mg,
Noj := —Do;D;}', Myj := Qo;D;}',
Qoj = ALy Pj; + Quj,
Doo := Ago — So0Poo — So1Pro — Soz2 Pao,
Doj = Aoj — Soj Pjj, Djj = Ajj — Sj;iPjj,
Djo := Ajo — S4;Poo — S5 Pjo, j=1, 2.
The matrices As, S5 and Qs do not depend
on P and Psy because their matrices can be
computed by using Ty, p, ¢ =0, 1, 2 which are

independent of Pj; and Py (Coumarbatch and
Gaji¢, 2000), that is,

Ts = Too — TorTy; Tio — To2T5s' Tao
e
_Qs _Az ’
Ago —500] [ Aoj _SOJ']
Ton 1= 5 Toi := 5
% [—Qoo —Ag | Y —Qoj —Afy

Ao —ST,] ,
Tio := J Yl, j=1, 2.
o= | g i

In the following, we will consider the solution of
the reduced-order ARE (9). Before doing that, we
first introduce the useful property of the reduced—
order ARE (9) (Mukaidani, 2001; Mukaidani and
Mizukami, 2001; Mukaidani et al. 2002).

Lemma 1: Under the assumptions 1-3, there
exist a matrix B, € R™*™ and a matrix C,



with the same dimension as [ C{; C7, ]T such that
Sy = BsR7'BI' Qs = CTC4. That is,

Ss := [ Bo1 + No1B11 Boz + No2Bas |
R 0 ] [Bg+ BNy,
0 Ry'| |Bi+BaNg |’
Qs == [Cly + LigCty Oy + L3gCas |

| Cro+ CiiLio
Cop + CaaLayg

j = 1, 2, Lj() = _Ej_lejO)
Ejo = Ajo — WyQq;, Ejj = Aj; —W;;Qy5,

Wi AT+ AWy — W;;Q5 Wi + 855 =0, (10)

] =clc,,

Moreover, the triple (As, Bs, Cs) is stabilizable
and detectable.

It should be remarked that the solution P, of the
MARE (5) is a function of the multiparameters
g5, j =1, 2, 12 and €9;. But, the solutions Py,
Py1 and Py of (9a) and (9¢) are independent of
the multiparameters €;, €12 and €21, respectively.
Moreover, we do not assume here that A;;, j =
1, 2 are nonsingular. Thus, our new results are
applicable to more realistic MSPS compared with
the existing results (Gaji¢, 1988).

The following lemma will establish the rela-
tion between P, and the reduced—order solutions
(9) (Mukaidani, 2001; Mukaidani and Mizukami,
2001; Mukaidani et al. 2002).

Lemma 2: Under the assumptions 1-3, there
exists small o* such that for all |u| € (0, o*) the
MARE (5) admits a symmetric positive semidef-
inite stabilizing solution P, which can be written
as

Poo+ O(lpl)  ex(Pro+ O(lpl)™
Pe= | er(Pro+O(|p])) e1(Pri+ O(|p]))
e2(Poo + O(Jpl))  VEre20(|ul)
e2(Pao + O(Jpl)”

\/§1EQO(||N||) . (11)
e2(Pa2 + O(|ull))

It should be noted that the entries (2, 3) and
(3, 2) of the solution P, can be written as
VE1220(|p]) because Pr; = 0. With respect to
the results of Gaji¢ (1988), we do not require the
singularity of A;;, j =1, 2.

4. NEAR-OPTIMAL CONTROL

The required solution of the MARE (5) exists
under the assumptions 1-3. Our attention is fo-
cused on the specific linear state feedback con-
troller which does not depend on the values of
the small parameters. Such the linear state feed-
back controller is obtained by eliminating O(||u|)

item of the linear state feedback controller (4).
If |u|| == /€162 is very small, it is obvious that
the linear state feedback controller (4) can be
approximated as

Uapp (t) = =R~ BT P(t)

Py 0 0
= —R_lBT ]fl() P11 70 x(t), (12)
Pyy 0 P

where B = ®.B,,
®. = block — diag ( In, e11n, €21n, ).

Remark: Even though it is quite different from
the composite controller design ( Khalil and Koko-
tovié, 1979; Wang et al., 1994;Xu et al., 1997), the
resulting controller (12) is similar to the existing
one. In fact, it will be proved later.

When ||| is sufficiently small, we know from
Lemma 2 that the resulting controller (12) will
be close to the optimal controller (4). In an
optimization problem it is of interest to check
whether the resulting value of the cost function
will be near its optimal value.

Theorem 1: Under the assumptions 1-3, the use
of the reduced—order controller (12) results in Jypp
satisfying

Japp = Jopt + O(”N“Q) (13)

Proof: When u,p,, is used, the value of the perfor-
mance index is

Tupp = 52(0) Wz (0), (14

where W, is a positive semidefinite solution of
the following maltiparameter algebraic Lyapunov
equation (MALE) as P, = ®.P

(Ae - Sepe)TWe + We(Ae - Sepe)
+P.S.,P.+Q =0. (15)
Subtracting (5) from (15) we find that V. = W, —
P, satisfies the following MALE
(Ae - Sepe)T‘/e + Vve(Ae - Sepe)
+(P. — P.)Se(P. — P.) = 0. (16)

We again assume the form (17) for V. as follows.

Voo e1Vip £2Vs0
Ve: 51V10 51V11 \/5152‘/27; . (17)
eaVao e1e2Vor  e2Van

The MALE (16) can be partitioned into



D, Voo + Voo Doo + D1y Vio + Vig Do + D3y Vag

+Vs0 D20 + O(|ul?) = 0, (18a)
VooDo1 + Vi D1y + €21 Van Aoy + 1D, Vi

+D{ Vi1 + VD Var + O(|u]?) =0, (18b)
Voo Doz + Vah Dag + €12Vib Aja + 22Dy Vi

1
Ja
DIiViy + Vi1 Dy + &1 (D VA + VigDor)

s (Vi Ant + AL Var) + O(JulP) = 0(180)
£1Vi0 Doz + 9D Vi 4 €12Vin Ara + €21 AL Voo

1
+\/EV27£D22 + ﬁ

D35 Vas + Vag Dag + e2(DE, Vi + VagDo2)

1
+ﬁ512(V21Al2 + AL V) + O(|u]?) = 0(18f)

where

+D3y Voo + DiVoh +O(Jul?) =0,  (18¢c)

Di, Va1 + O(Jul?) = 0, (18e)

- Doo Do1 Do2
Ao —S.P.=d;' | D1y D11 e12412 |,
Doy €21A21 Do

(Pe - Pe)Se(Pe - pe) = O(”NHQ)

Setting || = 0 for the above equations (18), we
have

Do Voo + VooDoo + DigVio + VigDio
+D3 Voo + Vi Dag = 0,

VooDo1 + ViEDyy + DIyViy +VaDi Vs, =0,
1
Va

Dj;Vij+ VD =0, j=1, 2,

1
Va
Since D11 and Doy are stable, using the stan-
dard properties of the algebraic Lyapunov equa-
tion (ALE) (Zhou, 1998), we deduce that V,; =
0, pg = 11, 21, 22, where V},, = 0 are O-order
solutions of (18). Using V,, =0, pg = 11, 21, 22,
we get

Voo Doz + Vih Dag + D3y Vas + DIVih =0,

VaVyi Doy + —=D{, V3 = 0.

D{ Voo + Voo Do = 0,

Vo= _%ODOij_jla j=1 2.

Since Dy = A, — S Py is stable from the ARE
(9a) (Mukaidani, 2001; Mukaidani et al. 2002), we
also deduce that V,q =0, pg = 00, 10, 20. Thus,

we have

Vog = O(|u)Vy), pg =00, 10, 20, 11, 21, 22.

Substituting V,q = O(||,u||)Vp(;) into (18) and by
following the above steps, we obtain the following

equations because Vp(ql ) — Vp(q1 ) =0.

ljui=o0

Vog = O(||) V2, V2 0. (19)

pq >

Hence

Ve=W,—-P.= O(”NHQ)a (20)
which implies (13). O

We have therefore provided a complete theoretic
analysis of the near—optimality of the reduced—
order optimal control for the MSPS. Note that the
intuitive result of Theorem 1 can be also proved
by using Newton-Kantorovich theorem (Ortega,
1970).

In the rest of this section, we will show that the
near—optimal controller (12) is equivalent to the
existing composite optimal controller (Wang et
al., 1994;Kokotovi¢ et al., 1986). Let A;;, j =
1, 2 of (1) be nonsingular. Then, the composite
optimal controller is

Ucom (t) = =R BT X (1)

Xog O 0
= —R_lBT X10 X11 0 x(t)(21)
Xoo 0 Xoo

In the above, X is the unique stabilizing positive
semidefinite symmetric solution of the ARE

(A, — B.R'EFC,)T X0

+Xoo(Ar — B.R;'EFC,) — X0 B, R * B} X
+CX(I,, — E.R;'ET)C, =0, (22)

where

Ar AOO - A01A1_11A10 - A02A2_21A20,
B, = [ Bo1 — Ao1 A7y Bi1 Boz — A2 Ay Bao |,
Cy

Cio — 011A1_11A10
Cao — 022A2_21A20

g __[CuAnBu 0
" 0 C2A5, Bos |

:|) RT:R_‘_EZ—‘ET)

Xjj, 3 =1, 2 are the unique stabilizing positive
semidefinite solution of the following AREs

AT X5+ XjiAz5 — X585 X5 + Q5 = 0,(23)
and Xjo, j =1, 2 are

Xjo = [Xoo(S0;X;; — Aoj) — (Ajo X
+Qoj)](Aj; — Sj5X55) (24)
Theorem 2: Suppose that the fast state matrices

Ajj, 3 =1, 2 are nonsingular. Under the assump-
tion 1-3, the following identities

Xijj :ij, XjOZPjOa Xoo = Poo, j=1, 2,(25)



hold. Hence the resulting near—optimal controller
(12) is the same as the composite optimal con-
troller (21).

Proof: First, comparing (23) with (9¢) X;; =
P;j;, j =1, 2 yields directly. Second, comparing
(24) with (9b) and noting that X,;; = Pj;, we
have the conclusion that X0 = Pjo, j = 1, 2 if
Xoo = Poo. Therefore, the remainder of the proof
is to show that Xog = Pyo. In order to do that, we
only need to show that

A, — B, R'EFC, = Aq, (26a)
B.R;'BI = 5S,,
cr(I,, — E.R;'ENC, = Q,.  (26c)

Before showing these relations, let us define
(pp-115, Kokotovié et al. 1986)

H =1 4n,
R{'B},P11D' Biy 0 (27)
0 Ry ' B1, Py Dyy! Boo
Then,

H ' = ni+nz
[R#BEPMA;SBM 0 ](28)
- —1pT p —1
0 R2 BQQPQQAQQ BQQ

Thus, using (28) and the ARE (9c) we have

HR'H' = R . (29)

Let us further introduce six useful identities.

-1 —1 D -1 _ —1
Ajj +Ajj Sijijjj = Djj 5 30a

(30a)
Al 4+ DS P A = D (30b)
JJ J3 MI37 334555 Ji’
Inj + Sijijj_jl = Aijj_jl, (300)
In, + P;;5;;D;.0 = A[; DT, (30d)
Q(j); — ijAj_lejO = Q(j); =+ D]-ijjjAj_lejo,(SOe)
_DOj + NQijijj = NOjAjj; ] = 1, 2. (SOf)
Hence, using the above relation, we have A, —
B.R;'ETC, = A, which proves (26a). Due to
the page limitation, the rest of the proof of The-
orem 2 is omitted. (See for e.g., Xu et al., 1999;
Mukaidani, 2001) O

From Theorem 2, we claim that the new near—
optimal controller includes the existing composite
optimal controller (21) as the special case.

5. CONCLUSION

In this paper, the optimal control problem asso-
ciated with the MSPS has been considered. The
main contribution of this paper is to propose

the new design method of the e¢;-independent
reduced—order controller. Note that the proposed
design method is quite different from the existing
method such as the two—time—scale design method
and the descriptor variable approach. It has been
newly shown that the resulting controller achieves
O(||?) approximation of the optimal cost. Fur-
thermore, since it has been proven that the result-
ing controller is equivalent to the existing com-
posite controller, when the fast subsystems have
the special form such controllers will achieve the
O(||?) approximation.
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