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Abstract: Periodic signals can be modeled as a real wave with unknown period in
cascade with a piecewise linear function. A recursive Gauss-Newton prediction error
method (RPEM) for joint estimation of the driving frequency and the parameters
of the nonlinear output function parameterized in a number of adaptively estimated
grid points is introduced. The Cramér-Rao bound (CRB) is derived for the suggested
algorithm. Numerical examples indicate that the suggested algorithm gives better
performance than using fixed grid point algorithms. Copyright (©2002 IFAC

Keywords: Frequency estimation, Identification algorithms, Nonlinear systems,
Piecewise linear analysis, Prediction error methods.

1. INTRODUCTION

There is a quite substantial literature dealing
with the problem of retrieving noisy sinusoidal
signals, see for example (Nehorai and Porat, 1986)
and (Hindel and Tichavsky, 1994). In general,
a periodic function with unknown fundamental
frequency in cascade with a parameterized and
unknown nonlinear function can be used as a
signal model for an arbitrary periodic signal as
shown in Fig. 1. This approach has two additional
properties. First, it gives information on the un-
derlying nonlinearity, in cases where the overtones
are generated by nonlinear imperfections in the
system. Second, prior information about the wave
form can be used to increase the efficiency of the
algorithm.

In (Wigren and Héndel, 1996), (Abd-Elrady,
2000) and (Abd-Elrady, 2001b), the nonlinearity
was chosen to be piecewise linear with the esti-
mated parameters being the function values in
a fized set of grid points as shown in Fig. 2,
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Fig. 1. The approach to harmonic signal modeling.

resulting in fized grid point adaptation. In this
paper, the RPEM algorithm introduced in (Abd-
Elrady, 2000) is modified to enable the algorithm
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Fig. 2. Grids points, parameters and resulting
piecewise linear model..

to estimate the grid points as well as the driving
frequency and the parameters of the nonlinear
output function, resulting in adaptive grid point
adaptation. This expected to reduce modeling er-
ror since it gives the algorithm more freedom to
choose the suitable grid points.

The contributions of this paper are as follows:
The CRB is derived for the suggested method.
Furthermore, the performance of the adaptive grid
point algorithm is studied by numerical examples.
The purpose is to investigate the performance as
compared to fixed grid point algorithms.

2. THE SUGGESTED ALGORITHM

In order to define the parametric signal model, a
periodic function being the input to the estimated
static nonlinearity is needed. This function reflects
any prior knowledge that is available. It could,
for example, be chosen as a triangle wave in
cases where the measured signal closely resembles
that signal. Since the model is a cascade of two
blocks as shown in Fig. 1, the differential static
gain of the model will be a factor of two free
parameters. It is nevertheless necessary for the
algorithm to have information about where the
static gain is located, or the criterion function may
have an infinite number of minima. Hence, one
of the parameters need to be fixed, cf. (Wigren,
1993). In (Wigren and Handel, 1996) and (Abd-
Elrady, 2001b), this was done in the driving signal
block. Here, however, the opposite situation will
be investigated.

In order to fix the static gain in an amplitude
subinterval I, (cf. (Abd-Elrady, 2000)) contained
in exactly one of the subintervals of the nonlinear
block, the driving input signal u(t, 8;) is modeled
as

u(t,0) = XAwt), 6, =(X w)T (1)

where ¢ denotes discrete time, w € [0,7] de-
notes the unknown normalized angular frequency,
w = 2nf/fs where f is the frequency, and f

is the sampling frequency. X is a (possibly time
varying) parameter recursively estimated to allow
the linear block of the model to adapt its static
gain so that the data in I, can be explained. The
fact that A(.) is periodic now means

C1) A(w(t+ Zm)) = A(wt), ke Z.

Then let one period of A(wt) be divided into L
disjoint intervals I, j =1,---,L, and assume

C2) A(wt) is a monotone function of wt on each
interval I, j=1,---, L.

Remark 1: C2) is introduced to avoid restric-
tions that would reduce the generality of the ap-
proach. This can be explained as follows. Assume
that one static nonlinearity is used and A(wt) =
sin(wt) then the model output fi(6;,sin(wt)) is
obtained. If the unknown parameter vector 8; of
the nonlinear block is fixed, fi(01,sin(w(nw/w —
t))) = f1(01,sin(wt)) holds for all t. This means
that the model signal in half of the time intervals
of length 7/w is given by the signal in the remain-
ing time intervals.

A piecewise linear model is used for the parame-
terization of the nonlinearity, cf. (Wigren, 1993).
Choosing I, to be contained in the first interval
I, the grid points are defined as
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Then with f;(0;,9;,u(t,6;)) denoting the nonlin-
earity to be used in I;, The parameters 8; are
chosen as the values of f;(6;,9;,u(t,0;)) in the
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Here K, is the user chosen static gain constant
defined as
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Thus the model output becomes
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Remark 2:u(t,0,) € I; means that the phase wt
is such that I; is in effect, cf. (Abd-Elrady, 2000).

£(05,95,u?) ={

= K,, Q(t,0) € L. (4)

A piecewise linear function of u(t,6;) can now
be constructed from the linear segments with end
points in (u! ,, f! ;) and (u!, f/). A RPEM then
follows by a minimization of



V(8) = J\}grlw—ZE[e (t,0)] (6)
where E[.] denotes expectation. Here, (¢,0) =
y(t) —y(¢, 8) denotes the prediction error and y(t)
is the measured signal to be modeled.

The objective of this paper is, as stated in the in-
troduction, to estimate the grid points recursively
in addition to the estimation of the fundamental
frequency and the parameters of the nonlinear
output function. This will give the algorithm more
freedom to choose the grid points and achieve
a better performance. The negative gradient of
y(t, 0) is needed in the formulation of the recursive
algorithm, see (Soderstrom and Stoica, 1989). It
is given by (for u(t,6;) € I;,j =1,--- ,L)
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Here D), indicates that the algorithms described
in (Ljung and Séderstrom, 1983) are used to keep
the predictor in the model set.

Remark 3: It is considered here that some pre-
cautions are taken to prevent grid miss ordering
during the estimation process. This is stated as

C3) Grid ordering is included in the definition of
the model set.

3. THE CRAMER-RAO BOUND

In this section the CRB of the proposed param-
eterization is calculated. Introduce the following
condition:

C4) The linear block and the static nonlinearity
of the system are contained in the model set.
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Proof: See Appendix A. O

4. NUMERICAL EXAMPLES

The adaptive grid point algorithm was studied
by numerical examples in (Abd-Elrady, 2001a) to
investigate its local convergence and the ability
to track both the damped amplitude and the
frequency variations. Also, the following examples
were performed.

Ezxample 1: Comparison with the fixed grid
point algorithm.

In order to compare the performance of the adap-
tive grid point algorithm with the fixed grid point
algorithm (cf. (Abd-Elrady, 2000)), 100 Monte
Carlo simulations were performed with differ-
ent noise realizations. The data were generated
according to: the driving wave was given by
u(t, ;) = sinwt where w = 27 x 0.05. The static
nonlinearity was chosen as

(5/3)u®*+0.15  u>03
fu) = u -03<u<03 (14)
—(5/3)u*-0.15  u<—0.3

The algorithms were initialized with A(0) =
0.95, A\, =099, P(0) =0.011, K, =1, X =
1, fo = 0 and w(0) = 27 x 0.02. Further, two
static nonlinearities (L = 2) were used, where
u(t,0,) € I, for positive slopes and u(t, ;) € I,
for negative slopes, respectively. The nonlineari-
ties were initialized as straight lines with unity
slope in the following grid points

1,-0.3,-0.1,0.1,0.3,1,2),
1,-0.3,0.3,1,2).

g1 = (_2,5
g2 = (_275

The mean square error (MSE) for the two algo-
rithms for different signal to noise ratios (SNR)
was calculated. The results are plotted in Fig. 3
which shows that the adaptive grid point algo-
rithm gives lower MSE than the fixed grid point
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algorithm for moderate and high SNR. This re-
sults indicates that the modeling error is lower for
the adaptive grid point algorithm.

Example 2: Performance of the adaptive
grid point algorithm as compared to the
Cramér-Rao bound (CRB).

In order to compare the performance of the adap-
tive grid point algorithm with the derived CRB for
the fundamental frequency estimation, 100 Monte
Carlo simulations were performed with different
noise realizations. The data were generated as in
Example 1 with a static nonlinearity given by

g1 = (~1,-0.3,-0.15,0.15,0.3, 1),

g2 = (~1,-0.3,0.3,1),

0, = (- 08 —0.3,0.3,0.8), 4(t,0;) € Iy
(-

1
- (16)
62 = (—0.8,—0.5,0.5,0.8), i(t,6;) € L.

Also, the algorithm was initialized as in Example 1
except that P = 0.00017. The statistics is based
on excluding simulations that did not satisfy a
margin of 5 standard deviations (as predicted by
the CRB) from the true fundamental frequency.
Both the CRB for the fundamental frequency
estimate and the MSE value were evaluated for
different SNR. The statistical results are plotted
in Fig. 4 which shows that the adaptive grid



point algorithm gives good results, in particular
for moderate values of the SNR.

5. CONCLUSIONS

A recursive harmonic signal estimation scheme
has been presented. It estimates the grid points
in addition to the fundamental frequency and
the parameters of the static nonlinearity. Local
convergence of the suggested algorithm was in-
vestigated by numerical examples and the CRB
was calculated for this algorithm. Monte Carlo
experiments show that the suggested algorithm
gives significantly better results than using fixed
grid point algorithms.
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APPENDIX A: PROOF OF THEOREM 1
The log-likelihood function is given by

16) =r— 55 D) -5(t6)7 (1)

where k is a constant. Let,

olne)  [ole) oi(e) oi(e)
00 ( 00, 06, 60g) (18)
where
391 :( )
_ (ol 0 ol(0)
‘(6fo 00, 60L>
81(0) ol(0) ol(0)
6ffk_ ofl, aff  afl.
( ol(0) 8l(0))
091 0g2 gL
6l(0) ol(0) ol(6) 0l(0) ol(6)
dg; 8u_k_ ol | oul 8ui+
(19)

Then, the Fisher informatiom matrix (Soderstrém
and Stoica, 1989) can be written as

5 010)" 210)

T=-F 30" o8

a1(8) T a1(e) o1(8) T d1(6) a1@) T o)

In order to calculate J, note that For u(t,0;) €
[u,,qu]GI],z— —kj ..ok -1, 5=1,...,L,
it holds that
9y(t,0) _ of;()
0X  Ou A(9)
9y(t,0) _ 0f;i()) ., dA(4)
ow  Ou Xt do (21)

Thus using the signal model C4) and CB5), the
blocks of (20) can be evaluated as in (Abd-
Elrady, 2001a). Introduce the notation in (13) and

use the facts that 3225999) = 0 and % -0

form #n and J =1/02 Y~ , I(t). Then (12) di-
rectly follows from C6), see (Abd-Elrady, 2001a).




