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Abstract: A new decomposition method is presented to handle optimal control design for
two-degree of freedom time delay control systems. In this approach exact relationships
between the actuator, process and design parameters furthermore the Nyquist stability
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of any control can be explicitly calculated using this approach. Copyright©2002 IFAC
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1. INTRODUCTION

A generic two-degree of freedom (G2DF) system
(Keviczky, 1995) was introduced by the authors,
which was successfully applied for several linear and
nonlinear control (NG2DF) problems (Haber and
Keviczky, 1999). The G2DF system is based on the
Youla-parametrization providing all realizable
stabilizing regulators (ARS) for open-loop stable
plants and on a special structure, which is a certain
extension of the well known IMC approach.
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Figure 1 The generic 2DF (G2DF) control system

A G2DF control system is shown in Fig. 1, where
y u yr , ,  and w  are the reference, process input, output
and disturbance signals, respectively. The optimal
ARS regulator (Maciejowski, 1989) of the G2DF
scheme (Keviczky and Bányász, 1999) is given by
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where

Q Q P K P G So w w w w w= = = +
−1 (2)

is the associated Y-parameter (Maciejowski, 1989)
furthermore

Q P K P G Sr r r r r= = +
−1 ; K G Sw w= +

−1  ; K G Sr r= +
−1(3)

assuming that the process is factorable as

S S S S S z d= =+ − + −
− (4)

where S+  means the inverse stable (IS) and S−  the

inverse unstable (IU) factors, respectively. z d−

corresponds to the discrete time delay, which is the
integer multiple of the sampling time.

It is interesting to see how the transfer characteristics
of this system looks like:
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where yt  is the tracking (servo) and yd  is the
regulating (or disturbance rejection) independent
behaviors of the closed-loop response, respectively.
Here Pr  and Pw  are assumed stable and proper
transfer functions, that are partly capable to place
desired poles in the servo and the regulatory transfer
functions, furthermore they are usually referred as
reference signal and output disturbance predictors.
They can even be called as reference models, so
reasonably Pr ω =( ) =0 1 and Pw ω =( ) =0 1 are
selected.

The ultimate optimal goal of any control system
could be to exactly follow a prescribed external
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(usually a unit step) excitation by the (step) response
of the closed-loop system. Using the G2DF system
we required to follow the transients prescribed by Pr

and Pw  (more exactly 1 −( )Pw ), i.e. the ideal overall

transfer function of the G2DF control system would
be

y P y P w y yo
r r w t

o
d
o= − −( ) = +1 (6)

Equation (5) shows that we can not reach these ideal

tracking y P yt
o

r r=  and regulatory behaviors

y P wd
o

w= −( )1 , because of the uncompensable time-

delay and the so-called invariant zeros in the IU factor
S− . The reachable best transient is given by

P G S z d
r r −

−  and 1 −( )−
−P G S z d

w w  respectively,

where Gr  and Gw  can optimally attenuate the

influence of S− . (Unfortunately S−  and z d−  do not
depend on the control design and only slightly can be
influenced via the proper selection of the sampling
time. These factors are basic behaviors of the process,
so they can be considerably changed only via certain
technological changes.) Express the deviation

between the ideal yo  and the best reachable (realizable
and optimal) closed-loop (given by (5)) as
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So the deviation transfer functions from the ideal

ones for both the tracking ∆yt
o  and the regulatory

properties ∆ yd
o  have the same structure:

P G S z d
x x

x r,w
1 −( )−

−
=

. This deviation form is

excellent for (sometimes called model matching)
optimization of the generic scheme as it was shown
in (Keviczky and Bányász, 1999). An interesting
result was (Keviczky and Bányász, 1999) that the
optimization of the G2DF scheme can be performed
in   H2  and   H∞  norm spaces by the proper selection
of the serial Kr  and embedded Kw filters
(compensators). Observe that in these optimizations
both Kr  and Kw use full cancellation of the IS factor
of the process and the originally quite sophisticated
optimization could be reduced to the optimal
computation of the Gr  and Gw  filters (Keviczky and
Bányász, 1999). If Gr  and Gw  are optimally selected,
then Ro  in (1) denotes the optimal ARS regulator.
(The reasonable factorization of S  means that the IU
factor S−   is monic. So if the optimal Gw  is also
monic, then a unity gain selection for Pw  - which
was assumed above - provides that Ro  is integrating,
so has a pole at 1. The same considerations can be
derived for Gr  and Pr .)

Do not forget that the optimal ARS regulator Ro  is

introduced for discrete-time systems, when the above
cancellation process does not result in a nonrealizable
order condition, so it is not so restrictive, than in the
equivalent continuous case. However, in some special
cases even the continuous version is applicable, as it
will be shown later.

2. A DECOMPOSITION APPROACH FOR
CONTROLLER DESIGN

The control error transfer functions of the G2DF
system are given by

e P G S z y P G S z w

E y E w E y Ew e e

d d= −( ) − −( ) =

= + = + = +
−

−
−

−1 1r r r w w

r r w r r r w

(8)

where the control tracking performance can be best

evaluated from the deviation ∆yr
o
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Here the first term characterizes the design
performance: how close Pr  is to the ideal unity and
the second term characterizes the performance
degradation caused by the invariant factors of the

process, i.e., how close P G S z d
r r −

−  is to Pr . The
form of (9) is a reasonable decomposition of the
general controller design paradigm. A corresponding
cost function can be constructed by using the triangle
inequality and applying an appropriate norm
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The same observations can be made for the tracking
errors, too. Formally both terms in (8) are the same,
however the control sensitivity function is the second
one

E E P G S z d= = − −
−

w w w1 (11)

which does not equal to the sensitivity function

  
Ew w w= −( )−

−P G S z d1 (12)

in (7) generating the regulatory model matching error

∆yt
o . A short analysis shows that
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Similar cost function can be constructed for the
regulatory performance, too
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Summarizing the above results: the control error
(resulting either from tracking or from disturbance
rejection) is the sum of a design error and a reference
model performance degradation error, so the overall
control performance is the sum of the design and
degradation performances. The authors believe that
the relatively easy and reasonably optimal solution of
a generally very sophisticated control problem
strongly depends on the proper decomposition of the
original paradigm. These decompositions would
correspond to a natural control engineering practice,
too, where the best reachable design goal and the way
how to obtain it appear in a generally iterative
sequential procedure.

A large percentage of papers suggesting optimal
controller design do not follow the above
decomposition possibility. Most of them introduce
an optimization technique only and stops there.
Some, who are familiar with the practical needs,
apply further special detuning methods to increase the
robustness of the solution or reduce the control
action. The basic theoretical optimal design methods
usually result in too sensitive controllers and assume
no amplitude constraints for the control action signal.
However, in the control engineering practice one
should always assume a nonlinear limiter,
corresponding to a real actuator. In many cases the
optimal regulator obtained by sophisticated
theoretical methods generates too big control actions
(amplitude changes at the output of the regulator).
These big changes mostly can not, of course, "go
through" the amplitude (sometimes rate) constrained
real actuator. Therefore industrial control experts used
to laugh at the optimal regulators of theorists because
they state that the resulting transient rather depends
on the practical limits than the optimality of the
design algorithm.

This is the case for almost all dead-beat, pole-
cancellation and H2  optimal regulators, except if this
input action is not penalized in the control criterion,
which reduces this effect. Therefore the energy of the
plant input is generally included in the control cost
function at the LQG and model-predictive controls. In
this way it is generally possible to reduce the
variation of the regulator output considerably. Input
penalization is always a possible way of detuning.
Optimization and detuning is also a certain
decomposition approach. However, it is not a simple
procedure to find the proper weighting (penalizing)
factors and filters in the criterion and there is no easy
way to calculate the obtained bandwidth for the
closed-loop system. The practice is usually based on
a "trial and check" method. The recent advanced
methodology tries to fulfill both performance and
robustness requirements via special compromising
loop-shaping techniques. These techniques can also
be considered certain decomposition methodology.

3. NEW RELATIONSHIPS FOR ROBUSTNESS
MEASURES

In our recent research, application projects and studies
we stick on the above decomposition, which
considers the optimal design and optimal performance
degradation the two major steps (14). For the
minimization of the second terms wide class of
solutions exists depending on the applied norm,
process and some existing constraints if the process
parameters are known. If these parameters are not
available, then an iterative combined ID and control
technique or its adaptive version can be used. The
recent advanced methods try to use the available or
assumed plant uncertainties in the optimization.

Relatively much less papers deal with the
optimization of the first term. The simple formal
description of this paradigm is
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where  U  is the (mostly amplitude:  U : u ≤ 1)
constrained input signal domain. A nonlinear limiter
representing a real actuator is always an important
source of considerable performance degradation
comparing to the original linear optimal system
designed. The general solution of this paradigm is a
certain rescaling of the nonlinear practical system to
achieve a linear operational domain. The performance
degradation caused by the limiting actuator and by the
necessary rescaling is calculable and known, if we use
a reference model redesign technique to fulfill the
amplitude constraints requirements and to solve the
paradigm (Keviczky and Bányász, 1997).

Using the iterative reference model redesign technique
the fastest reference model (so the highest closed-loop
bandwidth) can be found reachable within the linear
operational range. The situation is more complex,
because changing the reference model the robustness
margins of the closed-loop also change. It would be
desirable to know how the limiting robustness
measure depend on the limiting reference model. In
the sequel this relationship will be investigated.
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Figure 2 The simple realization of the optimal
continuous-time ARS regulator

In our analysis the continuous time equivalent of the
G2DF  will be used, where the following simple
assumptions are used:
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so the IS process is a first order time delay lag and the
reference model is a first order lag. The continuous-
time optimal ARS regulator based on (1) is now
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which can be easily realized, e.g., by a simple closed-
loop according to Fig. 2. Note that Ro  has a pole at
s = 0 , so it is an integrating regulator.

It is easy to compute that the open-loop transfer
function for the G2DF system is

Y R S
P

P e s= =
− −o

w

w1 τ (18)

so the crossover frequency ωc  can be obtained from

the condition Y = 1, i.e., when

P e P es s
w w

− −= −τ τ1 (19)

For the ideal no delay case this condition means that

P Pw w= −1 (20)
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Figure 3 The demonstration of the change of the
crossover frequency ωc  to ′ωc  for the uncompensable

process time delay e s− τ

This equation gives a very simple geometrical tool to
determine the crossover frequency ωc , demonstrated
on Fig. 3. This method gives ωc  by the intersection

of P jw ω( )  and the vertical line drawn at the point

0 5 0. +( )j , where P jw cω( )  equals to the distance

from the point 1 0+( )j , i.e., 1 − ( )P jw cω . This

method can also be applied to determine the distorted
′ωc  crossover frequency for the uncompensable

process time e s− τ  using P j e j
w ω ωτ( ) − .

The corresponding sensitivity function (11) of the
G2DF system is
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The E ∞  of the sensitivity function can also be

determined graphically on Fig. 3, which is the

farthest distance of P j e j
w ω ωτ( ) −  from the point

1 0+( )j .

Let us denote the well-known robustness measure:
the distance between the point − +( )1 0 j  and any

Y jω( )  point of the Nyquist curve of the open-loop

frequency characteristics by ρ

ρ ρ ω
ω

= ( ) = + =
( )

,
,

R RS
E R

1
1

(22)

Because ρ  changes by ω and the shape of ρ ω( )  is
difficult to characterize by one scalar indicator,
therefore the real stability/robustness measure is

ρ ρ ρ ω
ω ωm min min min1+= ( ) = ( ) = =

∞
R R RS

E
,

1
(23)

which is the distance between the point − +( )1 0 j  and

the closest point of Y jω( )  and the reciprocal value of

the norm E ∞ . (Note that in the most general case

of Y ω = ∞( ) = 0  this measure falls into the range

0 1≤ ≤ρm  for stable closed-loops.) It can be well

seen in Fig. 3 that the real part of P j e j
w ω ωτ( ) −  at

first the intersection at ω with the real axis can be
used as a lower limit for E ∞ , so its reciprocal value

is an appropriate upper limit for ρ ρm min=

ρ
ω ωτm

wRe
≤

− ( ){ }−
1

1 P j e j
(24)
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Figure 4 The reachable robustness measure ρm  and a
practical upper bound

One can see from Fig. 3 that ρm  depends only on
our design goal ( Tw ) and on the process behavior
time delay ( τ ), more exactly on their relative value
x T= w τ . Unfortunately there is no simple

analytical solution to obtain the relationship ρm x( ),

(and ρm x( )) only a numerical procedure can be
applied following the graphical interpretation for
E ∞  in Fig. 3. The ρm x( ) and ρm x( ) curves

obtained by MATLAB numerical calculations are
plotted on Fig. 4.



The interpretation of ρm x( ) is very important,
because this curve gives the theoretically best
reachable robustness measure with any controller for
an arbitrary IS time-delay plant. This measure is
ρm 0 0 5( ) = .  for cases when the Pw  reference model
requires a very fast transient response from the time-
delay process and the measure is ρm ∞( ) = 1, if the
time-delay is negligible comparing to the time-delay
of Pw .

A typical time-response of a PID regulator for a
square-wave input excitation is shown in Fig. 5 for
continuous-time case. Here the steady-state value

∆ ∆u u+ −∞( ) = − ∞( )  is the virtual gain of the
regulation between the excitation and the control

action. The ratio of the initial peak ∆u+( )0  to the

change 2∆u+ ∞( )  in the steady-state value
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is sometimes called the power-surplus or the virtual
differential effect of the regulator. Its reverse α  gives
the ratio of the time lag and the differential time of a

D-effect sT s TD D1 +( )( )α .

t
 0

∆ ∆u u+ −∞( ) = − ∞( )

∆u− ∞( )

∆u+( )0

u umin
-

max
+0 0( ) = − ( )

umax
+ 0( )

Figure 5. A typical time-response of a PID regulator
for a square-wave reference signal excitation in a

closed-loop

It is easy to see from the form of Ro  in our first
order example that the initial peak for a unit step
excitation is R T To wω = ∞( ) = , so the power
surplus is

p T Ts w= (26)

which comes from a simple physical interpretation:
we should like to speed up the closed-loop from the
original open-loop bandwidth ωb,o = 1 T  to the

desired closed-loop reference bandwidth ωb,c w= 1 T ,

therefore ps  is their ratio

p T Ts b,c b,o w= =ω ω (27)

Introducing an auxiliary variable y T T= w  it is
possible to draw a complex four quadrant figure

representing the relationships between ρm , x , y  and
ps  parametrized by the ratio T τ  as the Fig. 6

shows.

x T= w τ

ρmin

p T Ts w=

y T T= w

T τ

T τ

Figure 6. Complex relationships between ρm , x , y
and ps  parametrized by the ratio T τ

In a practical application the bottom two quadrants
are not necessary, these stand here only for
explanation. The numerically computed exact values
are plotted in Fig. 7.
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Figure 7. Dependence of ρm  from x , ps  and T τ
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ρmin
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Figure 8. Two possible design problems

The first possibility ➀  to use Fig. 7 is how one can
determine the necessary power surplus ps  to a
required design goal x T= w τ  for a given process
characterized by T τ . The another possibility ➁  is
when the technically allowable maximal power
surplus ps  is given and one can determine the fastest



possible reference model xmin  and the corresponding
worst (smallest) minimal robustness measure xmin .
These two design problems are represented in Fig. 8.
It is also possible that 

(ρmin  is given and we need the
corresponding xmin  and ps .

4. EXAMPLE

Assume a first order time delay plant as

S e ss= +( )−5 1 5 (28)

where T τ = 1 and use the design goals

P sr = +1 1( )       and     P sw = +1 1 2 5( . ) (29)

so in this case x T= =w τ 0 5. . Using Fig. 7
ps = 2 5.  and ρm = 0 56.  correspond to these process

and design parameters. Therefore if we need higher
robustness value ρm  it can only be reached by
applying a slower reference model Pw . Assume a

unit-step reference signal excitation y tr = −( )1 5
furthermore a step output disturbance
w t= × −( )0 5 1 25.  at the G2DF closed-loop. (Here

1 t( )  is the classical unit-step signal, i.e. 1 1t( ) =  for

t ≥ 0 and 1 0t( ) =  for t < 0.)

Fig. 9 shows the output response y t( )  of the closed-

loop for the y tr ( )  and w t( )  excitations. The output
of the regulator is shown in Fig 10, where it is easy
to see that ps = 2  ( 0 5. ps  is shown in the figure,

because the amplitude of w t( )  was 0.5 !!!). Do not

miss ps  with the power surplus ′ =ps 5  necessary to
Pr , which does not depend on the closed-loop
properties directly and independent of ps .

5. CONCLUSIONS

The full cross relationships of the most important
actuator, process parameters and robustness measures
are presented, according to the decomposition
approach discussed previously. The developed plots
are very important, because they give the ultimate
control limits reachable by any regulator. The
assumed plant was a simple first order time delay lag
and the question arises what can we say for higher
order and nonminimum phase plants. In case of a
higher order plant one can always use the dominant
time constant as T  in these investigations. All
further lag term (higher order denominator in S )
makes the situation worst lowering the ρm x( ) curve
(decreasing the robustness of the closed-loop). The
influence of minimum phase lead terms (higher order
numerator in S ) improves the situation by increasing
the ρm x( ) curve. The influence of IU non-minimum
phase lead terms (higher order unstable numerator in
S ) have the same effects as further lags in the
denominator of S . This is how the limiting character
of the above results should be interpreted.

w t( )

y tr ( )

y t( )

t

Figure 9. Model tracking ( Pr ,) and disturbance

rejection ( Pw ) properties shown by y t( )

u t( )

t

′ps

0 5. ps

Figure 10. The output of the regulator u t( )  with ps

and ′ps
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