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Abstract: This paper presents a generalized Markov stability criterion for linear systems 
by determining the Cauchy index in arbitrary segments. Based on the proposed result, 
several new algebraic criteria on Schur stability and strict aperiodicity for linear systems 
are obtained.  Copyright © 2002 IFAC 
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1. INTRODUCTION 
 

Given a characteristic polynomial of a linear system 
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It is said to be Hurwitz stable if the real part of all 
zeros of the polynomial (1) are negative; It is said to 
be Schur stable if all zeros of the polynomial (1) lie 
within unit circle. By matrix theory, Gantmacher 
(1964), algebraic criteria on Hurwitz stability for 
continuous linear systems can be directly derived 
from calculation of a Cauchy index of a rational 
fraction )(xR , namely )(xRI +∞

∞− , in the real axis. 
For the discrete-time systems, Nour-Eldin (1971) has 
shown that a linear system is Schur stable if and only 
if the Cauchy index of a rational fraction in the 
interval )1,1( +− equals the order of the denominator. 
Inspired by Nour-Eldin's work, some reduced criteria 
on Schur stability using combination of Markov 
parameters with some linear relationships of the 
system coefficients have been presented by Anderson 
et al (1976, 1990).  
 
A relevant concept to stability of the linear systems 
is the strict aperiodicity. The polynomial (1) is said 
to show strict aperiodicity if its zeros are all real, 
positive and distinct in the interval )1,0( . Algebraic 
criteria on checking the strict aperiodicity have been 
established by Soh and Burger (1989).  
 
This paper aims at developing a generalized Markov 
stability criterion through calculating the Cauchy 
index in arbitrary intervals. Combining Sturm 
theorem, Gantmacher (1964), and the proposed 
results, several new criteria on Schur stability and the 
strict aperiodicity are established.    

2. MAIN RESULTS 
 

Let )(1 xP and )(2 xP be two real polynomials of 

degree n and m  respectively. Suppose )(1 xP and 

)(2 xP  are coprime and the degrees nm ≤ . Then 

the irreducible rational fraction )(/)( 12 xPxP can be 
expanded in a series of decreasing power of x  as 
follows: 
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For the case of degree nm < , ),,,( 1210 −nsss m  
are the Markov parameters of the polynomials pair 

))(),(( 21 xPxP . Similarly, for the case of degree 

nm = , ),,,( 1201 −− nsss m  represent the Markov 
parameters. By using these Markov parameters, a 
Hankel matrix can be formed as follows: 
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It is well known that nxPxPI =+∞
∞− )(/)( 12  if and only 

if 0),( 21 >PPSn  for the case nm <  and an 

additional condition 01 >−s is needed for the case 
nm =  (see Gantmacher (1964)), which means that 

all the roots of )(1 xP and )(2 xP are real and 
interlacing. This paper extends the above result to a 
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general case, i.e., nxPxPI b
a =)(/)( 12  for any real 

segments ),( ba  in the real axis. We only consider 
the case nm < . This is because the results for the 
case nm =  can be easily obtained by making some 
slight modifications. 
 
THEOREM 1 Let a  and b  )( ba < be two real 

numbers. Then, nxPxPI b
a =)(/)( 12  is equivalent to 

the conditions (4) and (5) below:
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   0),(,0 21,0 >> PPSs an and 
0),( 21, <PPS bn  

  (5) 

 
where ),(),(),( 212121, PPcSPPSPPS nncn −≡ ∗  is a 
Hankel matrix with a real parameter c and  
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Proof. The proof is straightforward.   
 
REMARK 1 The proposed result in Theorem 1 can 
be viewed as a generalization of a significant result 
on calculation of a Cauchy index of a rational 
fraction in Gantmacher (1964). If −∞=a and 

+∞=b , condition (5) will be reduced to the 
condition 0),( 21 >PPSn . If −∞=a , condition (5) 
becomes 0),( 21 >PPSn  and 0),( 21, <PPS bn ; If 

+∞=b , condition (5) becomes 0),( 21 >PPSn  and 
0),( 21, >PPS an . So, the condition 0),( 21, <PPS bn  

( 0),( 21, >PPS an ) can be considered as an additional 

boundary condition on nxPxPI b =∞ )(/)( 12_  

( nxPxPI a =+∞ )(/)( 12 ) besides the basic condition 
0),( 21 >PPSn . 

 
THEOREM 2 Without loss of generality, suppose 
that the coefficient of the highest order term of the 
polynomial )(1 xP be positive, a  and b  be two real 

numbers )( ba < . Then, nxPxPI b
a =)(/)( 12  if and 

only if 
 

0),( 21 >PPSn  (7) 

0)()1( )(
1 >− + aP kkn  and   0)()(

1 >bP k , (8) 

 
for 1,,1,0 −= nk m . 
 
Proof. Necessity. Note that 
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It implies 0),( 21 >PPSn , and the polynomial )(1 xP  
has only simple real roots in the interval ),( ba . 
Consider the following polynomial sequence  
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It can be easily proved that the sequence (10) is a 
Sturm chain in the interval ),( ba . By Sturm 
Theorem, we have 
 

nbVaraVar =− )()(  (11) 
 

where )(xVar represents the number variations of 
sign in the Sturm chain for a fixed value x .  
       Note that Var(a) and Var(b) are two positive 
integers, hence we must have both Var(a)=n and  
Var(b)=0, simultaneously. So the linear conditions 
come immediately by noticing .0)(( )(

1 >xPsign n  

Sufficiency. Let 0),( 21 >PPSn . Then, all of the roots 
of )(1 xP  and )(2 xP must be real and interlacing. 
Furthermore, the polynomial sequence (10) is a 
Sturm chain in the interval ),( ba . So the linear 
conditions (9) imply (11), that is, excluding the 
possibility of real roots of )(1 xP lying on the real axis 
outside the interval ),( ba . This ensures 

nxPxPI b
a =)(/)( 12 .  This completes the proof.          

 
REMARK 2 From the conclusions in Theorems 1 
and Theorem 2, some equivalent relationships 
between Markov parameters and the polynomial 
coefficients can be established. As 0),( 21 >PPSn , 
for example, the condition 0),( 21, >PPS an  is 

equivalent to the conditions 0)()1( )(
1 >− + aP kkn  for 

1,,1,0 −= nk m . 
 
Now, we apply for the above results in studying 
Schur stability and the strict aperiodicity. Let )(zh  
and )(zg  denote the symmetric and antisymmetric 
parts of )(zf  in (1), respectively. The projection of 

)(zh and )(zg for qn 2= (even) from unit circle 
onto the real line )1,1( +− can be expressed by
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where )(xTk is the k-th Chebyshev polynomial of the 
first kind and )(xU k is the k-th Chebyshev 
polynomial of the second kind, respectively. For 
details about (12) and (13), readers may refer to the 



     

papers by Nour-Eldin (1971), Mansour and 
Anderson (1990).  
 
THEOREM 3 Consider the polynomial )(zf of  (1), 
for which is constructed )(),(),( xPzhzg and )(xQ . 
Then, the polynomial )(zf is Schur stable if and 
only if for 1,,1,0 −= qk m , we have 

0),( >QPSq , (14) 

0)1()1( )( >−− + kkq P  and   0)1()( >kP . (15) 

 
 
REMARK 3 The linear conditions in Theorem 3 are 
not equivalent to those given by Mansour and 
Anderson (1990). It should be pointed out that the 
bilinear transformation used by Mansour and 
Anderson (1990) is not necessary because of 
knowing all zeros of )(xP be real. If n  is an odd, 
the polynomial )(zf can be replaced by the 
polynomial )(zzf .  
 
Soh and Berger (1989) studied the problem of strict 
aperiodicity and established some algebraic criteria 
on it. We here directly apply the results in Theorem 2 
above to give two new algebraic criteria on strict 
aperiodicity.  
 
THEOREM 4 For discrete-time systems, the 
polynomial )(zf is strictly aperiodic if and only if 

0)',()',( >> ∗ ffSffS nn ; For continuous-time 

systems, the polynomial )(zf is strictly aperiodic if 

and only if 0)',( >ffSn and 0)',( <∗ ffSn . 
 
THEOREM 5 For discrete-time systems, the 
polynomial )(zf is strictly aperiodic if and only if  
 

0,0 >< evenodd aa , (16) 

0)',( >ffSn , 0)',( >ffSn , and 

0)1()( >kf  

 
(17) 

 
for ;1,,1,0 −= nk m  For continuous-time systems, 
the polynomial )(zf is strictly aperiodic if and only 

if 0)',( >ffSn , 0>ka  for .1,,1,0 −= nk m  
 

 

3. CONCLUSION 
 
By using Markov parameters and the Sturm chain, 
this paper presents some necessary and sufficient 
conditions on determining the Cauchy index in finite 
intervals. New criteria on Schur stability and strict 
aperiodicity for linear systems are obtained.   
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