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Abstract: The problem of unknown input estimation is considered in this paper. The
problem can be viewed as a two-player zero-sum dynamic difference game. A game-
theoretic approach that incorporates maximum principle arguments is adopted to solve
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1. INTRODUCTION

The estimation of unknown inputs is an important
problem in control, communication and signal
processing. For example, in control, the estimation of
unknown inputs can be used for fault detection and
isolation (FDI) and robust control design (Hou and
Patton, 1998; Corless, 1998); in communication, the
estimation of unknown inputs can be used for
channel equalization (Wang and Balakrishnan, 1999);
and in signal processing, it can be used for signal
reconstruction, deconvolution and noise removal
(Saberi et al., 2000; Shaked and Theodor, 1992;
Weston and Norton, 1997). Various methodologies
have been proposed for estimation of unknown inputs.
Park and Stein (1988) have proposed a method to
estimate unknown inputs by differentiating the output
measurement. Hou and Patton (1998) have
considered the problem of input observability and
input reconstruction for linear time-invariant systems.
The relations among input reconstruction, system
inversion and disturbance-decoupled observers have
been also explored. Park et al. (2000) have
developed an estimate for unknown inputs using an
optimal FIR (finite impulse response) filtering
algorithm. Corless and Tu (1998) have presented an

equivalent Lyapunov characterization of the
unknown input observer existence conditions of
Kudva et al.(1980) and designed the estimators
which, using only a measured output, can
asymptotically estimate the system state and the input
to any desired accuracy. A random-walk process has
been introduced to describe unknown inputs, and a
two-stage Kalman filter has been used to estimate the
unknown inputs together with the states of the system
(Hsieh, 2000; Hsieh and Chen, 1999; Keller and
Darouach, 1999; Keller et al., 1998). Recently,
Saberi et al. (2000) have developed the exact
unknown input estimation problem, which seeks to
find a time-invariant linear stable proper or strictly
proper filter that estimates the inputs while utilizing
the measured outputs in such a way that the transfer
function from all the inputs of the system to the
estimation error is identically zero. This requires
strong solvability conditions (algebraic constraints)
to be satisfied. The optimal and sub-optimal
unknown input estimation problems have also been
presented in Saberi et al. (2000) and Shaked and
Theodor (1992), where the transfer function from the
unknown inputs to their estimation errors is
minimized in either H, or H, norm sense. It is worth
noting that a number of literatures have been



published to deal with the problem of designing an
observer or a filter to estimate the state of the
systems subject to unknown inputs (Bhattacharyya,
1978; Darouach and Zasadzinski, 1997; Darouach ea
al., 1994; Hou and Patton, 1998; Kitanidis, 1987,
Kobayashi and Nakamizo, 1982; Yang and Wilde,
1988). But here the unknown inputs of the system are
directly estimated from the measurement.

In this paper, a game-theoretic framework that
incorporates maximum principle arguments is
proposed to treat the unknown input estimation
problem. The problem can be viewed as a two-player
zero-sum dynamic difference game. The difference
game is defined in which the unknown input
estimates and unintended inputs (unknown inputs,
process noise, measurement noise and initial
condition) have the conflicting objectives of,
respectively, minimizing and maximizing the
unknown input estimation error. The minimizer seeks
the optimal unknown input estimates, and the
maximizer seeks the worst-case intended inputs. It is
worth emphasizing that game-theoretic approach has
been applied to solve H, control and filtering
problems (Basar and Bernhard, 1995; Limebeer et al.,
1989; Shen and Deng, 1997). In this paper, the
game-theoretic approach incorporating maximum
principle arguments is first applied to deal with the
problem of unknown input estimation.

The paper is organized as follows. In Section 2, the
problem of unknown input estimation is formulated,
which is viewed as a two-player zero-sum dynamic
difference game. The main results providing a
solution to the problem of unknown input estimation
are developed in Section 3 by a game-theoretic
framework that incorporates maximum principle
arguments. Some concluding remarks are given in
Section 4.

2. STATEMENT OF THE PROBLEM

Consider the following class of discrete time-varying
systems with unknown inputs defined on £LJ[0, N]:
Xpa1 = ApXg + By pwy + By juy (M
Yk = Crxyp + Dyuy + vy (2)
where x,[JR" is the state, u,[JR" is the unknown
input, y,[0R™ is the measured output, w,[JJR" and
viOR® are the process noise and the measurement
noise, respectively, which are assumed to belong to
Ly[0, o). Ay, Bii, Bog, Cr, and Dy, are known real

bounded matrix functions with compatible
dimensions.

Remark 1: No particular assumption is made on the
unknown input u;. u; may be any signal including
impulsive noise. Furthermore, the unknown input is
allowed to appear in the measurement equation. Thus,
the systems (1) and (2) are of a general form. n

Remark 2: For simplicity, terms of known inputs are
not included in (1) and (2). Since the system
parameter matrices are known, the known inputs will
not affect the following analysis. n

Remark 3: The process noise w; and the
measurement noise v, are not required to be zero-
mean white Gaussian sequences. They may be any
disturbance signals with bounded energy and
stationary power belonging to L,[0, co]. u

The objective of this paper is to estimate the
unknown inputs from the measurement sequences yy
(0<k<N). The following performance is defined

N-1
s =]
u, —u
];) k k Qk
J = N-1 N-1 N-1
el = Il + 3 vl +lbeo = %6
Z”"Rk ZW"M ka 0 “olls
=0 =0 =0
(3)

where X, is an a priori estimate of xo, U, is an

estimate of the unknown input u,. 0,20, R>0, >0,
V>0 and $>0 are weighting matrices chosen by the

designer, and "xk"i1 =x; A.x, . For all possible

estimates 7 i » the performance (3) must satisfy the
following inequality:

Jsy? @)
where p>0 is a prescribed scalar. Therefore, our
problem is to obtain an estimate #, of u; over the

horizon [0,N] such that the following performance
index
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is minimized using the measurement y,. This

problem can be stated as a deterministic linear
quadratic game problem:

min  max J (6)
U Uy Wi, Vi X,

The solution to this game problem will be developed
in the next section.

3. THE ESTIMATION OF UNKNOWN INPUTS

Now, the maximum principle is applied to the

performance index J in (5). Denoting the Lagrange
multiplier by 2y2/\Tk+1, the Hamiltonian associated

with the performance index J subject to (1) is given
by
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By the maximum principle, the necessary conditions
for H to be a maximum are

0H .
J =20, (u, _“k)+2V2DkTVk vy =Cyx, —Dyuy)
k
=2y*Ryu, +2y’B; A, =0 (®)
O 2y W, +20° Bl =0 ©)
ow, ’
o0H

0_ = ZVZCkTVk vy —Cyx, _Dkuk)"'zyzAkTAkn
Xk

=2y°A, (10)

From (8), (9) and (10), uy, wy and vy are obtained
up =T 1 [Oxty = VzBZT,k/\kH ~y2 DI Vi (v~ Cexp)]
(11)
=1 pT
Wi =W, Bl’k}\kﬂ (12)
A = CHV (I + YDy T4 4k DE VO (ke = Croxg) —
CLVi DT 4 Opdiye + (AL +y>CLVi Dy BY A
(13)

where
Ty =(Ox —y*Ri =y>D}ViDy)™ (14)

Substituting (11) and (12) into (1) yields
X1 = Apx =V By kT kDI Vie (g = Cpxg) +
o -1 5T 2 T
By kT xQxtige + (By y Wy Bi e +y"Ba i Th kB2 j) A1
(15)

(13) and (15) are a two-point boundary value
problem with boundary conditions

Xy =50 +8 g, Ay =0 (16)

The solution to the problem is linear and is assumed
to be of the form

X, =X, +BA, (17)

Substituting (17) into (13) gives
A= TZ,kaTVk I+ yszTl,kaTVk Yy, —Cix,)

_Tz,kaTVkaTl,kaLA‘k +T2,kaT)\k+l (18)
where

T, =1+ CkTVk I+ yszTl,kaTVk )CkPk]_l (19)

‘Zk =(4, + ysz,le,kaTVka) (20)

Substituting (17) and (18) into (15) gives

Xpat ~ AT, ~ AP, CLV (L +y DT DIV,)

=V’ By T DV 13 = (Boy = 4B T5, LV DT Oty

= (=P * AP Ty A+ BBl +y? By T By ) A
21)

where
Vi =y —Cix, (22)

For (21) to hold true for arbitrary A, both sides
must be equal to zero identically, resulting in

Xpw = ApX + [ZkPkTZ,kaTVk I+ yszTl,kaTVk)
- Vsz,le,kaTVk e +(Byy ZkPsz,k CV,Dy )T, Oyt

(23)
and

Py = ZkPsz,kaT +B, W Bl +V'B,, T, By,
B=s" (@4
Now, making use of (11), (12), (16), (17) and (18),

the performance index J can be written
_ N-l R
J= ;[Iluk e T W T e Y
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where
x = (0,0, =1 =y T, DIV,CRT, GV DT, 0
~V'T, DV T, .5
+y°T, (D[ V,C,PT, A =B )M (253)
x, = - szLkaTVkaPsz,k CkTVka )7, O,
~V’ T, DV T 3y
+y’T, (D] V,C PT, Al =B )A,., (25b)
xy =(T,,C,PT,,C[V, ~D,T,,0,il,
+ T4,k T3,k yk
~(T,,C,P,T,, Al =y’ D,T,,B;,)A,. (25¢)
T,, =1-C.PT,,C.V,(I+y’D,T,,DV,)  (26)
T,, =1+y’DT,, D[V, (27)

Applying the identity
N-1

V(> A
k=0

N-1
o= > W+ A7 = AL R =0
=0

(28)
to (25), it can be rewritten as
- N-1 2 2N—1 2 2N—l )
T==3 kel v Sl v S
) N-1 o 2 ) N-1 2
-y z ||Wk By A 7, ty ;"Akﬂ "Pm -
2 =) T - ; - i 2
y ;"TZ,kck VkT4,kyk - TZ,ka VkaTl,kauk + TZ,kAk Akﬂ P,

(29)

Making use of (24), a tedious but straightforward
manipulation shows that the performance index (29)
can be rewritten as follows

_ N ) s N-1 5 , N-1 s
7=yl = 3 b, v S ol
=0 =0 =0
N-1 R
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(30)




n=(T,0, — 1~ szl,kaTVkaPkTZ,kaTVkaTl,ka )iy
‘Vle,kaTVkTs,k)_’k

(30a)
v, =~ szl,kaTVkaPsz,kaTVka )7, .0,
- szl,kaTVsz,k)_’k
(30Db)
V3= (T4,kaPsz,kaTVk - I)Dle,kaﬁk
+T3 T, 0,
(30¢)

where the term A has been eliminated.

(30) can be simplified as
N-1

J = Z [yzl’}kTQkTl,kaTVkaPkTz,kaTVkaTl,ka&k
=

+ ﬁkT (O _Qle,ka )L}k + yzl’}kTQle,kaTVkTS,kyk
+ yz)_’kTTs,TkaDkﬂ,Tkaﬁk - sz_/kTVkT4,kT3,k)_’k]
(31)
Suppose
T, <0 (32)
and
P, +PkaTVk U+ yszTl,kaTVk )C P, >0 (33)

If Assumptions (31) and (32) are satisfied, then it can
be easily verified that

(O Qle,ka + VZQle,kaTVkCkPsz,kaTVkaTl,ka >0

(34)
and
Vil Ty >0 (35)

Remark 4: Conditions (34) and (35) guarantee the
existence of the solution to minimax problem (6)
(Limebeer et al., 1989; Shen and Deng, 1997).
Assumption (32) is easily satisfied by choosing O,
Ry and V; under given y. And Assumption (33) is also
required for recursive computation in (24). u

Next, a completing square operation (first on the #, -

terms, then on the y, -terms) is performed to give:

_ N-1 R B e _
=3 i +y’zsion, v 5, -vInl; 136
=0 5.k
where
T, = VZQkTl,kaTVkaPkTz,kaTVkaTl,ka
+0, _Qle,ka >0 (37)

Ty = szS,TkaDle,TkaTS?lele,kaTVkTS,k
VT, T, >0 (38)

In view of (36), the optimal strategies of i, and
y, are
i, ==y T O T, DV, T, 3y (39)

and

¥ =0 (40)
Thus
min max J =0 (41)
Uy Yi
i.e.
J(iy, 5, =0 (42)

From (36), the optimal strategies 7, and ¥, satisfy a
saddle point inequality
Iy, 5,) S I, 5,) < J (., 5,) (43)
Furthermore, according to (11), (12), (16), (22) and
(2), (43) can be rewritten as
j(ﬁ:’ukﬂwkﬂvkﬂxo) = j(ﬁ:,uz,wz,vz,x;)

Sj(ﬁk’u;;’w:’v:ax;) (44)

The above results are summarized in the following
theorem.

Theorem 1: Consider the system (1) and (2). Let >0
be a prescribed level and suppose 77,<0. If the
discrete-time Riccati difference equation (24) has a
symmetric positive-definite solution such that (33) is
satisfied, then there exists an estimate #, such that (4)

is satisfied. Moreover, the estimate #, is given by
U, = ‘Vszflele,kaTVsz,k e —Cexy) (45)
where the evolution of X, is governed by the
following equation
Xt = Ay +[AkPkT2,kaTVkT:t,k - Vsz,kTLkaTVk
- yz(Bz,k - AkPsz,kaTVka)Tl,kaTSjI:Qk
Tl,kaTVkTs,k](yk -Cix;) (46)
Proof: According to (42) and (43), there exists an

estimate ﬁ,t such that J <0 which leads to (4).

Substituting (22) into (39) yields (45), and
substituting (45) into (23) yields (46). This completes
the proof. u

According to Theorem 1, the algorithm for
estimating the unknown inputs is formulated as
follows:

Step 1: Select weighting matrices Oy, Ry, Wi, Vi, S.
Step 2: Computing T’ x, Tox T3 Taxs Ts5x Tox-
Step 3: Estimate #, according to (46).

Step 4: Recursively solve the discrete-time Riccati
difference equation (24) forward in time.

Step 5: Recursively compute x,,, according to (46).
Step 6: k=k+1, go to Step 2.

Due to space limitation, the example is omitted.



4. CONCLUSIONS

In this paper, the problem of unknown input
estimation has been considered, which can be viewed
as a two-player zero-sum dynamic difference game.
The solution is derived in terms of one discrete
difference Riccati equation by a game-theoretic
approach  incorporating  maximum  principle
arguments. The result can be used to estimate
impulsive noise and hence remove the effect of
impulsive noise in the system.
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