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Abstract: A controller is presented for point stabilization of the extended chained form
system. The extended chained form system can not be stabilized by means of continuous
pure-state feedback. Moreover, it can not be exponentially stabilized by smooth feedback,
since the linearization around equilibrium points is uncontrollable. In this paper, a controller
is given that ρ-exponentially stabilizes the system. The controller is derived by using a
combined averaging technique for homogeneous systems and a backstepping approach. The
controller is illustrated in a benchmark example by application to the V/STOL aircraft without
gravity.
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1. INTRODUCTION

In this contribution we consider the feedback stabi-
lization problem for a specific class of second-order
nonholonomic systems, or systems subject to non-
integrable acceleration constraints. This class consists
of second-order nonholonomic systems that can be
transformed by coordinate and feedback transforma-
tion into the extended chained form. Examples of such
systems are the planar horizontal underactuated PPR
and RRR manipulators, see (Yoshikawa et al., 2000),
and the V/STOL aircraft without gravity (Hauser et
al., 1992).

The extended chained form can be seen as a general-
ization of the chained form (Murray and Sastry, 1993),
in the sense that it contains a drift vector field while the
chained form is a drift-less system. In (Astolfi, 1996)
exponential convergence towards the desired equi-
librium point of the extended chained form system
was obtained using discontinuous control. In (Laiou
and Astolfi, 1999) this result was extended to obtain
a weakened Lyapunov stability result called quasi-
smooth exponential stability. It is not yet clear whether
the extended chained form system can be stabilized by
means of smooth time-varying feedback.

In this contribution we consider the feedback stabi-
lization problem by continuous periodic time-varying
feedback. The idea is to use a continuous periodic
time-varying feedback to stabilize a subsystem, and
use a backstepping approach to stabilize the complete
system. Our approach follows that of (Morin and Sam-
son, 1997).

2. PROBLEM FORMULATION

Consider the extended chained form system

ξ̈1 = u1

ξ̈2 = u2

ξ̈3 = ξ2u1:

(1)

Since the image of the mapping (ξ; ξ̇;u) 7! (ξ̇1; ξ̇2; ξ̇3;

u1;u2;ξ2u1) does not contain any point (0;0;0;0;0;ε)
for ε 6= 0, this system does not satisfy Brockett’s
condition (Brockett, 1983). Therefore there does not
exist a continuous time-invariant state feedback that
asymptotically stabilizes the system to the origin. To
our knowledge the feedback stabilization problem for
(1) has not been solved yet. Although controllers
have been developed that achieve exponential con-
vergence to the origin (Astolfi, 1996), it is not even
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clear whether the system (1) can be ρ-exponentially
stabilized. In this paper we will show that (1) can be ρ-
exponentially stabilized by continuous periodic time-
varying feedback.

Consider the dynamics (1) in state-space form:

ẋ1 = x2 ẋ2 = u1

ẋ3 = x4 ẋ4 = u2

ẋ5 = x6 ẋ6 = x3u1;

(2)

with state-vector x = [x1;x2; : : : ;x6]
T given by xi =

ξi, xi+1 = ξ̇i, i = 1;3;5. The feedback stabilization
problem can be formulated as follows.

Problem 2.1. (Point stabilization problem). The
feedback stabilization problem is solvable if we can
design appropriate continuous time-varying state feed-
back controllers of the form

u1 = u1(t;x); u2 = u2(t;x) (3)

such that the equilibrium x = 0 of the closed-loop
system (2,3) is globally asymptotically stable.

3. PRELIMINARIES

In this paper we use the elements of C0
(R

n
�R;Rn

),
the set of continuous mappings from R

n
�R to Rn,

to represent continuous (time-varying) vector fields on
R

n. Let us now recall some definitions and properties
related to homogeneous systems.

Given a weight vector r = (r1; : : : ;rn) of real parame-
ters ri > 0 (i = 1; : : : ;n) and a real number λ > 0, the
mapping δr

λ :Rn
!R

n defined by

δr
λ(x) = (λr1x1; : : : ;λrnxn)

is called a dilation of weight r.

A homogeneous norm associated with a dilation δr
λ

is a continuous positive-definite function ρ : Rn
! R

which is homogeneous of degree one with respect to
δr

λ. For example, a homogeneous norm associated with
the dilation δr

λ is given by

ρr
p(x) =

 
n

∑
j=1

jx jj
p=r j

!1=p

; p > 0:

A continuous function f : Rn
�R! R is said to be

homogeneous of degree τ with respect to δr
λ if

f (δr
λ(x); t) = λτ f (x; t)

for every couple (x; t) 2 Rn
�R.

Definition 3.1. A (time-varying) vector field f :Rn
!

R
n given by f (x; t) = ∑n

i=1 fi(x; t)∂=∂xi, is said to
be homogeneous of degree τ � 0 with respect to δr

λ
if, for each i = 1; : : : ;n, the i-th component fi is a
homogeneous function of degree τ + ri with respect
to δr

λ. More precisely, for i = 1; : : : ;n,

fi(δr
λ(x); t) = λτ+ri fi(x; t)

for all λ > 0 and every couple (x; t) 2 Rn
�R.

Definition 3.2. Consider a homogeneous norm ρ as-
sociated with a dilation δr

λ. The origin of the system
ẋ = f (x; t) with f (0; t) = 0; 8t, is said to be locally
ρ-exponentially stable (with respect to a dilation δr

λ)
if there exist strictly positive constants δ, K and γ
such that for any t0 2 R and any solution x(t), with
x(t0) = x0,

ρ(x0)< δ =) ρ(x(t))� Kρ(x0)e
γ(t�t0)

:

Note that (local) ρ-exponential stability implies (local)
K -exponential stability as defined in (Sørdalen and
Egeland, 1995). Let us recall a result that will be used
to deduce ρ-exponential stability of the controlled
system.

Proposition 3.1. (Pomet and Samson, 1994) Let δr
λ

be a dilation and assume that the vector fields f ;g 2
C0

(R
n
�R;Rn

) are T -periodic in their second argu-
ment, f is homogeneous of degree zero with respect to
δr

λ, and h can be written as a (possibly infinite) sum of
homogeneous vector fields, of strictly positive degree,
with respect to δr

λ. If the origin is an asymptotically
stable point for

ẋ = f (x; t)

then

(i) it is also globally ρ-exponentially stable
(ii) the origin of the ‘perturbed’ system

ẋ = f (x; t)+h(x; t)

is locally ρ-exponentially stable.

The following averaging result for (fast) time-varying
homogeneous systems will also be used to prove ρ-
exponential stability of the controlled system.

Proposition 3.2. (M’Closkey and Murray, 1993) Con-
sider the system

ẋ = f (x; t=ε); (4)

with f : Rn
�R! R

n a continuous T -periodic vector
field ( f (x; t+T )= f (x; t)) and f (0; t)= 0; 8t. Assume
that (4) is homogeneous of degree zero with respect
to a dilation δr

λ(x) and that the origin y = 0 of the
“averaged system”

ẏ = f̄ (y); f̄ (y) = 1=T
Z T

0
f (y; t)dt; (5)

is asymptotically stable. Then there exists ε0 > 0
such that, for any ε 2 (0;ε0), the origin x = 0 is
exponentially stable with respect to the dilation δr

λ(x).

The main result that will be used to prove ρ-exponen-
tial stability of the controlled system is a result for cas-
caded high-gain control for a class of homogeneous
systems, given in (Morin and Samson, 1997). It con-
cerns the classical problem of integrator backstepping
for homogeneous time-varying systems, and is given
by the following proposition:



Proposition 3.3. (Morin and Samson, 1997) Consider
the following system:

ẋ = f (x;v(x1
; t); t) (6)

with f : Rn
�R�R! R

n a continuous T -periodic
function, x1

= (x1; : : : ;xm);m� n and v :Rm
�R!R

a continuous T -periodic function, differentiable with
respect to t, of class C 1 on (R

m
n f0g)�R, homoge-

neous of degree q with respect to the dilation δr
λ(x).

Assume that (6) is homogeneous of degree zero with
respect to the dilation δr

λ(x) and that the origin x = 0 is
an asymptotically stable equilibrium point. Then for k
positive and large enough, the origin (x = 0;y = 0)
is an asymptotically stable equilibrium point of the
system

ẋ = f (x;y; t)

ẏ =�k(y� v(x1
; t)):

(7)

Remark 3.1. Proposition 3.3 can be applied recur-
sively to the asymptotic stabilization of the system

ẋ = f (x;y1; t)

ẏ1 = y2

...

ẏn = u:

(8)

Suppose that the feedback y1 = v1(x1
; t) asymptoti-

cally stabilizes the system, i.e. , the first equation in
(8). Then by recursive application of Proposition 3.3
it follows that the feedback

u =�kn(yn� vn�1(x
1
;y1; : : : ;yn�1; t)); (9)

where vi = �ki(yi � vi�1(x1
;y1; : : : ;yi�1; t)) for i =

2; : : : ;n�1, asymptotically stabilizes the origin.

Remark 3.2. Note that if the system (8) is homoge-
neous of degree zero with respect to some dilation
δ̄r

λ, then Proposition (3.1) implies that the closed-loop
system (8,9) is globally ρ-exponentially stable.

4. STABILIZATION OF THE EXTENDED
CHAINED FORM SYSTEM

x1

x3 x5

x2

x4 x6
u2

u1

Fig. 1. The extended chained form system.

Consider the equilibrium x = 0 of (2). The dynamics
of the (x5;x6;x3;x4)-part are in strict feedback form
as illustrated in Figure 1. Therefore we can apply a
backstepping approach to stabilize the dynamics of
(x5;x6;x3;x4).

The idea of using a combined homogeneous and
backstepping approach has already been proposed in

(Morin and Samson, 1997). In the following sections
this result will be extended to the case of the extended
chained form system. First we rewrite the system into

∆1

8>><
>>:

ẋ5 = x6

ẋ6 = x3u1

ẋ1 = x2

ẋ2 = u1

∆2

�
ẋ3 = x4

ẋ4 = u2:
(10)

In the first part of the approach we consider x3 as a
“virtual input” and use it, along with the input u1 to
stabilize the origin of the ∆1 subsystem. The second
part of the approach consists of using a backstepping
technique to stabilize the origin of the complete sys-
tem (∆1;∆2). This approach is described in the follow-
ing two sections.

4.1 Stabilizing the ∆1 subsystem

The subsystem ∆1 with v = x3 as a virtual input is
given by

∆1

8>><
>>:

ẋ5 = x6

ẋ6 = vu1

ẋ1 = x2

ẋ2 = u1

(11)

Notice that the vector field x 7! f (x;(u1;v)), which
defined the ∆1 subsystem, is not affine in the con-
trol variables (u1;v). Nevertheless, if we define a
dilation δ̄r

λ with weight r̄ = (2;2;1;1) and apply
feedback functions u1 = α1(x; t) and v = α2(x; t),
with (α1;α2)2C0

(R
4
�R;R1

) r-homogeneous of de-
gree one, then the closed-loop vector field (x; t) 7!
f (x;α1(x; t);α2(x; t)) becomes r-homogeneous of de-
gree zero.

Define x1
=(x1;x2;x5;x6). Consider the feedback laws

(u1;v) 2C0
(R

4
�R;R1

) given by

u1 =�k1x1� k2x2 +h(x1
)g(t=ε)

v =�
k5x5 + k6x6

h(x1)
g(t=ε)

(12)

with ki > 0, i 2 f1;2;5;6g and g :R!R a T -periodic
function satisfying

R T
0 g(τ)dτ = 0 and

R T
0 g2

(τ)dτ >

0. The continuous function h : R4
! R is positive-

definite and homogeneous of degree one with respect
to δ̄r

λ, for example h(x1
) = ρ̄(x), with ρ̄(x) being a

homogeneous norm associated with the dilation δ̄r
λ

given by

δ̄r
λ(x

1
) = (λ2x5;λ2x6;λx1;λx2); (13)

Proposition 4.1. Consider the closed-loop system (11,
12) with g : R! R a continuous T -periodic function
satisfying

R T
0 g(τ)dτ = 0 and σ =

1
T

R T
0 g2

(τ)dτ > 0.
Assume that the continuous function h : Rn

! R is
homogeneous of degree one with respect to the dila-
tion δ̄r

λ(x
1
; t). Then there exists ε0 > 0 such that, for

all ε 2 (0;ε0), the origin of the closed-loop system
(11,12) is ρ̄-exponentially stable.



PROOF. The closed-loop system is given by

ẋ5 = x6

ẋ6 =�
(k5x5 + k6x6)

h(x1)
(�(k1x1 + k2x2)g(t=ε)

+h(x1
)g(t=ε)2�

ẋ1 = x2

ẋ2 =�k1x1� k2x2 +h(x1
)g(t=ε)

This system is homogeneous of order zero with re-
spect to the dilation δ̄r

λ and can be written as ẋ= f (x; t)
where f (x; t) is T -periodic in t. By assumption h(x1

)

is homogeneous of degree one with respect to δr
λ.

Therefore the closed-loop system is homogeneous of
degree zero with respect to δ̄r

λ. The “averaged system”,
see (5), is given by

ẋ5 = x6

ẋ5 = σ(�k5x5� k6x6)

ẋ1 = x2

ẋ2 =�k1x1� k2x2

(14)

which is globally exponentially stable. The conclusion
follows by application of Proposition 3.2.

Remark 4.1. The input v(t;x1
) in (12) is not defined

for x1
= 0, i.e. h(x1

) = 0. However, any function g(x; t)
that is homogeneous of degree τ > 0 with respect
to a dilation δ̄r

λ(x) and continuous for all x 6= 0, can
be extended by continuity to be continuous at x = 0.
Therefore v(t;x1

) becomes continuous and bounded at
x1

= 0 by defining v(t;x1
) = limx1

!0 v(t;x1
) = 0 for

x1
= 0.

4.2 Stabilizing the (∆1;∆2) subsystem

We now consider the ∆2 subsystem. In the previous
section we designed a feedback u1 = α1(x; t) and a
virtual feedback v = α2(x; t) that exponentially stabi-
lized the ∆1 subsystem w.r.t. the dilation δ̄r

λ(x). The
input u2 can be obtained by using the backstepping
approach given in Proposition 3.3.

By Proposition 4.1 the ∆1 subsystem is asymptotically
stabilized by x3 := v(x1

; t), with v given by (12). The
(∆1;∆2) system can be written as

ẋ1
= f (x1

;x3; t)

ẋ3 = x4

ẋ4 = u2:

By recursive application of Proposition 3.3, see Re-
mark 3.1, we conclude that the equilibrium x = 0 can
be asymptotically stabilized by the controller

u2 =�k4(x4 + k3(x3 +(k5x5 + k6x6)
g(t=ε)
h(x1)

)): (15)

Thus, the origin of the extended chained form system
(2) can be asymptotically stabilized by the control
laws:

u1 =�k1x1� k2x2 +h(x1
)g(t=ε) (16)

u2 =�k4(x4 + k3(x3 +(k5x5 + k6x6)
g(t=ε)
h(x1)

));

with ki > 0, i 2 1;2; : : : ;6.

Corollary 4.2. The extended chained form (2) is glob-
ally exponentially stable with respect to the dilation δr

λ
given by

δr
λ(x) = (λx1;λx2;λx3;λx4;λ2x5;λ2x6): (17)

PROOF. The weight vector is r =(1;1;1;1;2;2). The
vector field f (x) = (x2;0;x4;0;x6;0)T and the input
vector fields g1(x) = (0;1;0;0;0;x3)

T and g2(x) =

(0;0;0;1;0;0)T of (2) are of degree 0, �1 and �1 re-
spectively with respect to the dilation δr

λ. The control
laws u1 and u2 given in (16) are of degree one with
respect to δr

λ(x). The closed-loop system is therefore
of degree zero with respect to δr

λ. By application of
Proposition 3.1 we conclude that the origin of the
closed-loop system is globally ρ-exponentially stable
with respect to the dilation δr

λ(x
1
).

5. THE V/STOL AIRCRAFT WITHOUT
GRAVITY

In this section we study the standard planar V/STOL
(vertical/short take off and landing) aircraft (Hauser
et al., 1992). The V/STOL aircraft is an underactu-
ated system and can be viewed as a special case of
a second-order nonholonomic control system, in the
sense that the system is subject to a non-integrable ac-
celeration constraint. If the system is not influenced by
gravity, the linear approximation around any equilib-
rium point is not controllable, and the system can not
be stabilized by strict static state feedback. Moreover,
due to non-controllability of the linear approximation,
it is not possible to exponentially stabilize the system
by smooth feedback.

In this section we will use the V/STOL aircraft without
gravity as a benchmark example and show that it
can be globally ρ-exponentially stabilized using the
developed control laws. The global stabilization of the
V/STOL aircraft with gravity can be solved using the
same control laws.

5.1 Equations of motion

A longitudinal or planar model of the V/STOL aircraft
in hover mode has been developed in (Hauser et al.,
1992). Let (x;y) be denote the horizontal position and
altitude (inertial coordinates) of the center of mass and
let θ denote the roll angle. The control inputs are the
thrust acceleration v1 and the roll acceleration v2. The
equations of motion, without gravity, become:
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Fig. 2. V/STOL aircraft: x (solid ), y (dashed ), θ (dash-dotted ), inputs v1 (solid ), v2 (dashed )

ẍ =�sin(θ)v1 + γcos(θ)v2

ÿ = cos(θ)v1 + γsin(θ)v2

θ̈ = v2

(18)

where γ is the coefficient related to the coupling be-
tween the rolling acceleration and the lateral acceler-
ation of the aircraft. Using a coordinate and feedback
transformation the V/STOL aircraft dynamics can be
transformed into the extended chained form. We will
map an arbitrary equilibrium point qd = [xd ;yd ;θd ] to
the origin ξ = 0 of the extended chained form.

Assume that γ > 0. The (x,y)-dynamics can be lin-
earized by choosing

v1 =�sin(θ)ux + cos(θ)uy

v2 =
1
γ
(cos(θ)ux + sin(θ)uy) :

(19)

The coordinate and feedback transformations

ζx = y+ γ(cos(θ)� cos(θd))

ζy =�x+ γ(sin(θ)� sin(θd))

ux =�sin(θ)v1 + γcos(θ)v2� γsin(θ)θ̇2

uy = cos(θ)v1 + γsin(θ)v2 + γcos(θ)θ̇2

(20)

bring the system into

ζ̈x = cos(θ)v1

ζ̈y = sin(θ)v1

θ̈ = v2

(21)

The coordinates (ζx;ζy) have been identified as flat
outputs for the system, see (Olfati-Saber, 2000). Fi-
nally, for jθ� θd j < π=2, the coordinate transforma-
tion

ξ1 = cos(θd)(ζx� yd)+ sin(θd)(ζy + xd)

ξ2 = tan(θ�θd)

ξ3 =�sin(θd)(ζx� yd)+ cos(θd)(ζy + xd)

(22)

and input transformation

v1 =
u1

cos(θ�θd)

v2 = cos2
(θ�θd)u2�2tan(θ�θd)θ̇2

(23)

bring the system into the extended chained form (1).
Concluding, the planar model of a V/STOL aircraft

without gravity can be transformed into the extended
chained form.

5.2 Simulation

Define q = [x;y;θ]. Our control objective is to stabilize
the equilibrium qd = [0;2;0] starting from an initial
condition (q(0); q̇(0)) = (4;2;0;0;0;0). We select γ =
0:1. The controllers are given by (16) with g(t) =
sin(t), ε = 1=2 and the control parameters

k1 = 1; k2 = 1; k3 = 20
k4 = 20; k5 = 2; k6 = 2:

The function h(x1
) is chosen equal to the homoge-

neous norm ρ̄(x) given by (13), i.e.

h(x1;x2;x5;x6) =

q
x2

1 + x2
2 + jx5j+ jx6j

The result of stabilizing the equilibrium q = qd of the
V/STOL aircraft is shown in Figure 2. The logarithm
of the homogeneous norms ρ̄(x) and ρ(x) associated
with (13) and (17) respectively, are shown in Figure 3.

0 5 10 15
−6

−4

−2

0

2

4
logρ(x)

t[s]

Fig. 3. The logarithm of ρ(x) (-) and ρ̄(x) (- -)



6. CONCLUSIONS

We have presented a continuous periodic time-varying
controller for stabilization of the extended chained
form system. The design approach is inspired by the
results in (Morin and Samson, 1997). The controller
achieves global ρ-exponential stability of the origin
of the extended chained form system. The simulations
show the effectiveness of our approach. It should be
noted that we can only guarantee ρ-exponential sta-
bility for the extended chained form system, i.e. the ξ
coordinates. The mechanical system, i.e. the q coordi-
nates, is only ρ-exponentially stable on a set where the
input and coordinate transformation are valid.
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