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Abstract: Scheduling trains on a single railway line is an issue in it own right, and is a building 
block for scheduling trains in railway networks. A local, state dependent,  travel advance 
strategy combined with a discrete event model of a railway line represent a more efficient way 
of approaching the scheduling problem than nonlinear programming approaches used in the 
past. The approach also eliminates a deficiency of nonlinear programming formulations, which 
produce a programmed schedule that cannot be applied if any perturbation in train operations 
occurs. Copyright © 2002 IFAC. 
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1. INTRODUCTION 
  

Railroad transportation in the US is a major factor in 
freight transportation. While Japan and Western 
Europe have a dense and well-developed passenger 
system the  US boasts  the  most developed  freight 
transportation system in the world. The freight 
railways are  continuously increasing   their reliance 
on modern technology (e.g. introduction of   
Electronically Controlled Pneumatic brakes and 
Positive Train Control) to enable more efficient train 
operation.  At the same time, despite the fact that 
railways carry about 40% of all freight in the US, 
track miles in use have steadily declined, many of the 
existing railway corridors have single-track lines, and 
there are no plans for adding a second track to 
existing corridors. In addition, rail freight 
transportation in the US is based on diesel traction, 
and the cost effectiveness of transportation of freight 
by rail is becoming more sensitive to  the increasing 
costs of fossil fuel, a cost that will only increase in 
the near future.  More efficient train operation, and 
specifically energy- and time-efficient  scheduling, as 
well as fast rescheduling of trains,  can significantly 
contribute to the cost effective operation of  freight 
traffic.  
 
2. SCHEDULING TRAINS ON A LINE  
 
Three main approaches  have been pursued in solving 
scheduling problems, the choice depending on the 
characteristic features of the scheduling problem:  (i)  
linear  or  nonlinear   programming  formulations, (ii) 
network flow formulations, and (iii) dynamic system 
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formulations. The main feature of the problem  is that 
trains traveling in opposite directions can meet and 
pass (M&P) each other, and trains traveling in the 
same direction can   meet and overtake (M&O) each 
other only at sidings and stations (referred to here as 
M&P points). A line may contain some double track 
sections (or long sidings) which allow additional 
M&P  and M&O opportunities, but otherwise the 
characteristics of the problem remain the same.  A 
railway network scheduling problem essentially 
retains these characteristic features with cross-over 
and merge points.  
 
The  scheduling problem with obstruction constraints 
is not the most appealing type of problem for a 
programming approach because it involves a huge 
number of precedence conditions (times of arrival 
and departures of trains at M&P points) and logical 
variables to obtain a valid formulation (e.g. Higgins 
et al, 1995). Branch and bound algorithms for integer 
programming problems have been used to solve the 
problem (Kraft, 1987).  The main drawback, in 
addition to the significant computational effort 
(which often requires that part of the scheduling 
problem be simplified, such as estimating future 
delays, as opposed to computing the actual delays), is 
that the obtained schedule is valid only if no 
perturbation occurs in its realization.   
 
The problem does not fit well into network flow 
formulations widely employed in communication and 
computer networks, and also in some job scheduling 
problems in manufacturing. Such problems are 
formulated in terms of five basic characteristics at 
each node of a network: the arrival pattern, the 
service pattern, the number of parallel servers, the 
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system capacity, and the service discipline. The 
network approach also requires one to specify the 
dynamics of transmitting customers, or jobs, from 
one node to another. The approach has been used 
mainly in cases where the customers, or jobs, arrive 
randomly, the time of travel from a node to a node is 
not  a dominant factor, and the buffer capacities are 
typically large, but finite. In the train scheduling 
problem the travel from node to node takes 
significant time, trains obstruct each other on single 
track sections, and buffers are extremely small. 
Moreover, there is a central authority scheduling all 
the trains, and randomness does not enter the problem 
in a natural way. For this reason, while there have 
been attempts to transplant the network flow 
formulations to train scheduling problems (Iyer and 
Ghosh, 1995), this is done at some loss of reality  
since   trains are handled as inertia-less jobs traveling 
through  the network. 
  
The train scheduling problem is considered here as a 
discrete event dynamic system.  At the core of the 
approach is the development of train schedules based 
on  the concept of  a  Travel Advance Strategy 
(TAS), as opposed to the open-loop schedules based 
on the use of nonlinear programming algorithms. As 
a strategy that operates each train as a function of the 
current location of all trains, it is applicable whether 
the trains happen to be on schedule, or at some 
unpredicted state due to diverse disruptions of travel  
plans. In addition to this advantage, it takes much less 
effort to develop the discrete event approach to the 
scheduling problem than to formulate the problem as 
in integer programming problem as has been done in 
the past , a characteristic well-noted in other 
application areas where heuristic strategies are used  
(Corne et al, 2000).  
 
The modeling of trains as dynamic systems has of 
course been done, and in particular for optimizing the 
pacing velocity of a train along a section of the 
line(e.g. Howlett and Pudney, 1995). But, what has 
not been attempted    is to model  all trains on a line 
as a dynamic process to obtain a time-efficient, or 
energy-efficient  schedule, or a schedule that  
provides a trade-off between time- and energy- 
efficient travel.  The approach used here   considers 
the problem in the same setting as is done in the 
programming approaches, with constant train 
velocities in sections of the line, but treats the 
problem as a dynamic discrete event system. The 
collection of events that characterize the reduction of 
the continuous dynamic process into a  discrete event 
process    are the times when a train reaches an M&P 
point.  The travel advance strategy (TAS) is 
essentially a service discipline at each M&P point as 
to which of the trains in the vicinity of each others 
(i.e. on adjacent sections of the line) should continue 
to travel, and which should be stopped at an M&P 
point. The sequence of discrete events points, 

therefore, is neither random nor defined by some 
external mechanism, but is a direct outcome of the 
defined TAS.  Because train arrivals at M&P points 
are also functions of train velocities and section 
lengths, they form an asynchronous process resulting 
in a discrete event process.  
 
3. A GREEDY TRAVEL ADVANCE STRATEGY 

 
The problem formulation used here differs from those 
used in the programming approaches in that the 
departure times and train velocities in sections are 
assumed fixed (as opposed to belonging to pre-
defined admissible ranges), and the stop times at 
M&P points,  arrival times at destinations, and the 
complete schedule  are obtained by applying the TAS 
and solving the discrete event dynamics.  
 
The approach, applied here to develop a greedy TAS 
to be described,  provides more information and the 
solution has features different than solutions obtained 
using nonlinear programming approaches. First, for 
given departure times and velocities, it determines a 
complete schedule.  Second, the greedy TAS   can be 
used to develop schedules for perturbed cases such as 
when a particular train is off its schedule, and the 
scheduling of all trains must be modified,  or when a 
temporary speed restriction requires a change in 
schedule, when an additional train must be introduces 
into a given schedule, etc. Third,  the computational 
effort is extremely moderate, comparable to solving 
for the time trajectories of a dynamic systems of 
order N=N1+N2, where N1 is the number of trains 
traveling in one direction and N2 the number of train 
s traveling in the opposite direction. (Although the 
algorithm, and the associated software, contains 
many logical “if <statements> then <statements> 
else <statements> end” types of pieces of code, 
beyond the simple calculation of train  advances in 
each discrete event step, unique paths through such 
logical  statement do not increase the computation 
time as is the case in the programming formulations 
when all constrains must be checked for feasibility.)  
Fourth, the greedy TAS has  been shown to have 
highly desirable characteristics in relation to 
scheduling trains on a single line. If nominal train 
velocities by sections are the maximum allowed 
velocities (due to track,  infrastructure, or train 
restrictions) the greedy TAS provides time efficient 
advance of all trains; using the ratio of unobstructed 
times to unobstructed times required for all trains to 
clear the line as a performance criterion, denoted by 
η, the schedule developed by the TAS produces 
schedules  with  η in the range [0.95 – 0.99] for a 
variety of scheduling problems. Moreover, the greedy 
TAS  easily modifies into a strategy with optimal  
pacing velocities while maintaining the above time 
efficiency ratio.  Thus, it can provide an energy 
efficient solution with optimal pacing velocities in 
the spirit of  the prevailing philosophy in train 



   
scheduling. Finally, the greedy TAS exposes the local 
nature of decision-making that suffices in most train 
encounters, and so offers  realistic extension of the 
approach to scheduling trains in a railway network.   
 
The train model used in scheduling studies assumes 
that the velocity is constant on sections of the line, 
and we accept this assumption, although the variable 
train velocity case is discussed as well. In addition 
the following assumptions are made: ( i) The route is 
fixed and defined by the vector xd; (ii) Velocities of 
all trains in all sections of the route are fixed, and 
given by the matrices  VL and VR, respectively, (i.e. 
the element VL(i,m) is the velocity of train i traveling 
from O to D in section m, and the element VR(j,n) is 
the velocity of train j traveling from D to O in section 
n); (iii) The times of origin of the trains are given by  
the vectors TOL and TOR, and the arrival times are 
free, and depend on the train advance strategy; (iv) 
The minimal headways of trains are defined by the 
vectors dL and dR (i.e. dL(i) defines the minimum 
distance between train i and any train ahead of it). 
     
Assuming constant velocities, the model  of system 
dynamics may be written in the form  

    (1) 
0Rk

0Lk
y)0(y)),k(y),k(x(vt)k(y)1k(y
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where the train positions form the state, and the time 
periods ∆tk  in the discretization vary and depend on 
the state and train velocities, with the constant 
velocity of a train depending on the section of the 
line the train  is currently traversing.  The time 
intervals are triggered by the arrival of trains at 
stations or sidings. The trains reach M&P points 
asynchronously, and this leads to a discrete event 
system (DES).  
 
The train advance strategy proposed here will be 
referred to as a greedy TAS because it is locally 
optimal and depends on local information. The 
advance of train i,  moving in the O to D direction, 
depends on the position and velocity of only the 
trains in its vicinity, typically trains i+1, and i-1, 
moving in the same direction and any  train j moving 
in the opposite direction and immediately ahead of  
train i, as will be defined (and vice verse for a train j 
moving in the D to O direction). The main 
components of  the greedy TAS  are: 
 
(a) Determination of the next discrete event (the 

train which will first reach an M&P point, and 
the required time interval dtnext). 

(b)  Resolution of the   M&P and/or M&O events at 
this M&P point, and possibly  at other M&P 
points where a train is stationed-at  at the current  
discrete event , and 

(c) Development of the rules for a simple M&P, 
simple M&O, or a combined M&P with M&O 
event. 

 

Let the vector xd with K+1 component delineate  
lengths of sections of the line, with xd(1) = 0 and 
xd(k+1)-xd(k) the length of section k. Indexing by L   
trains traveling from O to D, and by R trains traveling 
from D to O, two vector variables, SL and PL,  will be 
associated with trains moving from O to D, and two 
vector variables,  SR and PR, will be associated with 
trains moving from D to O.  Variables SL, SR are used 
to characterize the velocities of trains while in a 
section, variable PL, PR are used for a train  at an 
M&P point.  Thus, PL(i) = n implies xd(PL(i)) = xd(n) 
and identifies the train i as being at M&P point n, etc.  
 
Given  a state x(k), y(k) at some discrete event (DE)  
k, the time to next M&P for each train is computed, 
from 
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and adjusted  by eliminating the associated 
components of z(i) or w(i) if a slower train is 
obstructing a faster train in reaching first an M&P 
point.  Here  
      SL(i) = m   if x(i,k) ∈ (xd(m),xd(m+1)),  
      PL(i) = m   if x(i,k) ∈ [xd(m),xd(m+1)),   
      SR(j) = n    if y(j,k) ∈ (xd(n),xd(n+1)),    
      PR(j) = n    if y(j,k) ∈ (xd(n),xd(n+1)]. 
      VL(i,k) = velocity of train i  in section k 
      VR(j,k)= velocity of train j in section k 
 
Given an arbitrary vector Γ  let the two arguments 
α,β in the operation [α,β] = min(Γ) denote the 
minimal component and the lexicographical order of 
that component in G. Then, given the vectors z and 
w,  let    
 [zmin,imin] = min(z)           (3) 
 [wmin,jmin] = min(w) 
characterize the train (imin, or jmin)  to first reach  the 
next M&P point  and the minimum time   required 
(zmin or wmin),  at the current discrete event. When 
trains are not in the vicinity of each other all trains 
will advance along the line for the duration of the 
time interval 
           (4) )w,zmin(dtnext minmin=
at which time the next DE occurs (because train imin, 
or jmin, as the case may be, reaches an M&P point,  
referred to as the focal M&P for that DE). 
 
Concerning the service rules, referred to here as rules 
of engagement, a strategy must be defined for an 
M&P event, an M&O event and a combined 
M&P/M&O event involving three trains.  four trains 
cannot pass each other if they are in vicinity of each 
other at any one DE, and this option is excluded  by 
the defined rules of engagement at prior discrete 
events.  
 



   
If two trains traveling in the same direction are in the 
vicinity of each other, there exists a case when the 
dtnext must be computed differently because of a 
slower train obstructing a faster train. There are two 
subcases to consider: (a) train i-1 is the first to reach 
an M&P point, in which case  dtnext = z(imin-1) ,  or 
(b) there is some other train that reaches some other  
M&P point first, and  dtnext ≠ z(imin-1).  In subcase 
(a) trains i-1  and i are both advanced to PL(i-1) = 
m+1. (At this moment, as far as the train advance 
strategy is concerned, an overtake has occurred, and  
the order of trains moving in the O to D direction is 
changed,   train i becoming i-1, and train i-1 
becoming train i).  In subcase (b)  some other train, 
which first reaches an M&P point, defines dtnext and 
the next implementable DE; train i-1 is advanced 
towards the M&P point, and train i is advanced  as 
close to it as its minimum headway allows.  
 
The greedy  TAS decomposes all M&P events into 
eleven distinct M&P, M&O and combined 
M&P/M&O events and defines for each train in 
vicinity of the focal  M&P event  which train is  
stopped and which train advances in the current DE.  
 
Concerning a M&P event,  two trains, say i and j, in 
the vicinity of each other  can be in any one of the 
following situations: 
  
(i)  i is at M&P point m (with PL(i) = m), j is in  
      section m (with SR(j) = m) 
(ii) i is in a section m  (SL(i) = m), j is at M&P point   
      m+1 (PR(j) = m+1) 
(iii) i is at M&P point m   (PL(i) = m), j is at M&P   
       point m+1  (PR(j) = m+1). 
(iv) i is in a section m (SL(i) = m), j is in section 
m+1,  (SR(j) = m+1). 

 
Concerning M&O event between two trains i,  i-1 
moving from O to  D,  and in the vicinity of each 
other, the following  cases are to be distinguished: 
  
(i) train i-1  is faster, and is either traveling in Section   
     SL(i-1) = m or is at the M&P point  PL(i-1)=m+1  
    while train i is in  section   and SL(i) = m; 
(ii) train i is faster and is traveling on section SL(i) =   
     m, while train i-1 is at the M&P point PL(i-1)  
     =m+1; 
(iii) train i is faster and is traveling in section SL(i) =   
    m,  and train i-1 is also traveling  ahead of it in  
    section SL(i) = m.  
 
Case (ii) is the only case where an overtake can occur 
at the considered DE. Whether an overtake will take 
place or not is determined by the speed at which the 
two trains travel. Since train i-1 is at an M&P point, 
and is slower, the time it needs to reach the next 
M&P point is longer than for train i. In the greedy 
strategy an overtake will occur if  

VL(i,SL(i))>VL(i-1,SL(i-1)).          (5) 

If (5) holds train i-1 will be held at PL( i-1) = m,  
and train i will be advanced to PL(i) = m. In the 
opposite case, train i-1 will be advanced, except if 
there is also a train j traveling in the opposite 
direction in the vicinity giving rise to a simultaneous 
M&P event, to be discussed below. 
 
The different situations involving three trains  that 
may be encountered in  case of a combined 
M&P/M&O event, considered from the point of view 
of a train i traveling from O to D, and meeting two 
train traveling from D to O, are 

 
(i) train i is  in section SL(i) = n, and the   trains j-1, j   
     are  in section PR(j-1) = PR(j)  = n+1; 
(ii) train i is at the M&P point PL(i)=n+1, and the    
    trains j-1, j are  in  section  PR(j-1) = PR(j) = n+1; 
(iii) train i and train j-1 are at the M&P point n, train  
    j is  traveling in section n+1; 
(iv) train i is in section SL(i) = n, train j-1 is at the  
    M&P point n, and train j is in  section n+1.   
 
A rule of engagement is defined for each case 
(omitted here due to space limitations) and the 
totality of these rules form the greedy TAS. This is a 
local strategy because only trains in the vicinity of 
each other enter into the decision affecting which 
train will advance, and which will be stopped at an 
M&P point. Its  general form is 

    (6) 
)],k,j(y),1k,j(y),k,i(x),k,1i(x[v)k(v
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where jv, jv-1and iv, iv-1, denote  trains  (if any) in the 
vicinity of train i, or train j, respectively. It 
application requires that each train obtain information 
on the train in front of it traveling in the same 
direction, as well as closest train(s) approaching it 
from the opposite direction. If all train operators 
adhere to the strategy and there is a perturbation in 
the schedule of any particular train, one can apply the 
strategy to efficiently re-compute the remaining 
schedule from the new state, and apply it.   
 
 

4. TIME-EFFICIENT PERFORMANCE OF THE 
GREEDY STRATEGY 

 
A number of performance measures were used to 
assess the time-keeping  features of the proposed 
strategy: (i) the time to clear the line , (ii) the total 
delay of all trains , and (iii) the maximum delay. The 
time to clear the line of all trains, is  defined as 
             (7) d1aN1 ttJ −=
where t1d is the time of departure of the earliest train 
on the schedule, and tNa is the time of arrival of the 
latest train on the schedule. A characteristic of this 
criterion is that the total time to clear the line if all 
trains travel unobstructed is the minimum possible 
value of J1, denoted by . (This correspond to the f
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availability of double tracks over the entire line.) 
Given departure times and velocities one can 
compute , the time of arrival of the latest train 

and J . The  efficiency ratio 
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is taken as  the measure of the time-efficiency of the 
schedule obtained by a TAS. The superscript  “ob” 
stands for obstructed time, the time of arrival of the 
last train as computed from the greedy schedule. The 
total delay    criterion is defined by 

)T f
ai

ob
a −            (9) 

where  is the time of arrival of train i as obtained 

by a greedy TAS while  is the time of arrival of 
train i with unobstructed travel. The maximum delay 
criterion is defined by 

f
aiT
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Performance of the greedy TAS was analyzed on 
numerous examples of scheduling trains within a 24 
h period.   The main conclusion is that  with number 
of trains traversing a single line in a day, from each 
direction, of the order of  2 per hour the greedy 
strategy easily determines a schedule without 
encountering a deadlock. Moreover, as the number of 
trains is increased the efficiency ratio remains 
remarkably constant. The greedy TAS consistently 
produces schedules with  η in the range 0.95-0.99, 
with η =1   the minimal possible value.  

 
Example 1. We will illustrate the quality of the 
results that are obtained on a hypothetical study of 
the capacity of a line to a specific composition of 
trains traversing it. In brief, a line with 11 single 
track sections was defined with total length  of 210 
[mi] and with different maximum velocities, varying 
between 50-90 [mi/hr] in each section, but the same 
for all trains. The headways  were arbitrarily set at 
0.5 [mi] for all trains. The same number of trains was 
assumed to depart from each end of the line, with 
departure times of trains  approximately uniformly 
distributed over a 24 h period. The number of trains 
was then increased from N1 = N2 = 6 to N1 = N2 = 20 
(adding sequentially one new train from each 
direction). Finally, the number of trains was set to    
25 and then 30 from each direction. With 30 train sin 
each direction the scheduling problem involves 
approximately 850 DEs. 
 
The  schedules for the case N1 = N2 = 6 and N1 = N2 
= 30 are shown in Figure 1 and 2 in the standard 
scheduling diagram used in railway industry, with 
time displayed on the horizontal axis, and the  
distance (from O to D) on the vertical axis, with each 

trace representing the position of individual trains 
traveling from O to D, and from D to O. The 
horizontal lines represent the locations of the M&P 
points at which passes and overtakes can take place. 
A broken line at such a point represents a stop time 
for a particular train.   
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 Figure 1. N1 = N2 = 6 
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          Figure 2. N1 = N2 = 30 

 

Figure 3.  Efficiency index η in function of  N1 = N2   
 

While almost no decrease is to be noticed in the 
values of η, the total delay is a quadratic function of 
N1 = N2, and indicates that traffic  is approaching the 
capacity limit of the line with the considered type of 
traffic as the number of trains form each side 
increases beyond when N1 = N2 = 30.  
 



   
Considering  η in function of the number of trains, it 
is observed that η consistently remains above 0.95, 
Figure 3. Its mean value from this data is   ηm = 
0.9861 with a standard deviation of σ = 0.0074 (0.75 
% of the mean value). The results attest to the 
significant packing ability of the greedy TAS, as 
reflected in the value of J1 and the efficiency ratio η.  
 
 

5. DOUBLE  TRACK SECTIONS 
 
If some sections of the line have double tracks, the 
TAS is easily adapted by removing restrictions for 
M&P, and M&O in such sections. The scheduling 
problem, thus, has fewer conditions that define     
obstructions. The application of the greedy TAS then 
includes  the list of double track section and the 
algorithm is appropriately modified. As illustrated by 
the example below the greedy TAS maintains its 
time-efficient nature with respect to J1 and η.    
  
Example 2. Consider the hypothetical issue of 
equipping one of the 11 sections in the case study 
considered in Example 1 into a double track section. 
Let qq denote the section of the line with double 
tracks, with qq = 0 denoting the case when all 
sections have single tracks. For various N1 = N2 
cases, a second track   was introduced sequentially 
into each section of the line. The greedy strategy was 
then applied to obtain a schedule,  and the effect 
noted on the relevant performance criteria. The 
analysis was repeated with   shifted   departure times 
of all trains traveling from D to O (using  0.5 – 2 h 
shifts in half hour increments)  to avoid the possible 
biasing effects of a particular sets of departure times. 
 
Shown in Table 2 is a sample analysis for N1 = N2 = 
30, which tests the capacity of the line.  The analysis 
was used to single out section of the line where 
addition of a second track would be most beneficial. 
All three time-efficiency related criteria defined 
earlier were considered.   The analysis singled out the 
longest sections, corresponding to   qq = 6 (30 mi), 
qq = 10 (25 mi), and qq = 1 (20 mi), in most cases.  
The introduction of a second track in any section 
usually, but not always, resulted in improved 
performance. The reason is that the local nature of 
the greedy TAS tends to exploit the second track 
although this may in some instances lead to worse 
performance in the remaining sections which cannot 
handle the increased volume of traffic. This opens 
new questions in terms of the performance of a local 
strategy with fewer (local) obstructions and  these 
will be studied separately. Nevertheless, the 
performance with respect to the efficiency ratio 
η remains excellent.  
 
The study also provides evidence that the three time-
efficiency related criteria used here are mutually 

independent, in that a decrease in value  of one does  
not necessarily imply the decrease of the other two.  
 
    Table 2. Effect of a single double track section  

 
 

6. CONCLUSIONS 
 
Local, state dependent, TAS and the discrete event 
models of a railway line represent a more efficient 
way of approaching the scheduling problem then 
nonlinear programming approaches. The onset of 
deadlock do to excessive traffic is  easily 
recognizable because dtnext is reduced to zero. But, 
there simply is no line where a much greater number 
of trains from each direction needs to be scheduled. 
That is why local strategies work well. If deadlock is 
due to local conditions, it is easily avoided by 
shifting certain departure times, if it is not local, then 
modifying the TAS to include a larger local 
neighborhood can resolve it. This is currently being 
implemented in extending the TAS approach to 
railway networks.    
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