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Abstract: The paper presents a new method for computations of the magnitude and
phase envelopes of uncertain transfer functions. The idea is to factor the transfer
function into its real and complex pair roots and find the maximum and the

minimum magnitudes of the gain and phase ol each factor. The Bode envelopes of
the given uncertain system are then found from those of the individual factors. This
approach, which is different from those based on the interval polynomial method
of Kharitonov, has the major advantage that the representation is more applicable
to practical situations where typically the coefficients of the various factored terms
relate to physical parameters of a mathematical model. Further the method results
in narrower envelopes and therefore improved designs as illustrated in the examples
which consider, lead, PI and PID controller designs. Copyright ©2002 IFAC

Keywords: Uncertain linear systems; Robust control; Bode diagrams; Envelopes;

Frequency responses; Robust stability

1. INTRODUCTION

Frequency response based methods play a funda-
mental role in the field of classical control the-
ory. Based on the frequency domain properties of
control systems, powerful graphical tools such as
the Nyquist plot, Bode plots and Nichols chart
have been developed in classical control theory
for the analysis and design of control systems.
In recent years, motivated by the well known
Kharitonov and the edge theorems (Kharitonov,
1979; Bartlett, et al., 1988), several results have
been published for the extensions of these meth-
ods to control systems with parametric uncer-
tainty for robust control system design.

The purpose of this paper is to study the com-
putation of the Bode envelopes and to discuss

the design of robust controllers for real uncertain
processes using the frequency response approach
of classical controller design methods. Frequency
response design methods are important in clas-
sical control theory since the transient response
performance, which is often most important in a
control system design, is related in an indirect
manner to the frequency response method. For
example, the gain and phase margins give a rough
estimate of the system damping. Although the re-
lationship between the transient response and the
frequency response is indirect, frequency domain
specifications can be easily obtained using the
Bode plot of a transfer function. The Bode plot of
an open loop transfer function of a control system
provides a clear indication of how the frequency
response should be modified to meet given specifi-
cations. Therefore, controller design based on the



Bode plot is simple and straightforward. However,
in order to apply this simple design technique to
uncertain systems, it is necessary to compute the
Bode envelope of a given uncertain system.

It is well known that some process dynamics can
be approximated by simple first order models or
by a standard second order system. In a more
general form the open-loop transfer function of
a real physical model can normally be written as
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2. FREQUENCY RESPONSE OF
UNCERTAIN SYSTEMS

The computation of the frequency response of
uncertain transfer functions plays a major role for
the application of frequency domain methods for
the analysis and design of robust control systems.
However, the main problem is to find the bound-
ary of the Bode, Nyquist or Nichols envelopes
without computing them by simply gridding all
the uncertain parameters. The Kharitonov and
Kharitonov like results such as the edge theo-
rem and the box theorem have triggered a large
amount of very promising research on the com-
putation of frequency responses of uncertain sys-
tems. Although it is not possible to review all of
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multiplicity N at the origin and 2a+m<N +n+2b.
It is assumed that the parameters K, Ly, Cni, Wni,
Caj, waj, 17 and T are not known exactly but vary
within intervals as follows
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these results here, a short review of some impor-
tant results developed in this direction are sum-
marized below. The extensions of the Kharitonov
and Kharitonov like results as well as a discussion
of the extensive literature on the area of para-
metric robust control can be found in the books
(Barmish, 1994; Bhattacharyya, 1995).
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The Bode, Nyquist and Nichols envelopes of inter-
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Although frequency response computations for
uncertain systems such as the Nyquist, Nichols
and Bode envelopes has been extensively studied
in the literature, the computation of the Bode
envelopes of the uncertain transfer functions of
the form of Eq.(1), which is the form of most real
process systems and leads to simpler results than
using the more general formulations usually con-
sidered, has not been specifically investigated. It is
of course important to point out that computation
of the exact boundary of the Nyquist and Nichols
envelopes of an uncertain transfer function of the
form of Eq.(1) is a difficult and challenging prob-
lem. However, for the computation of the Bode
envelope the scenario is different since for con-
struction of the Bode envelope one needs to find
the magnitude and phase extremums at each fre-
quency. In this paper, a simple procedure is given
to construct the boundary of the Bode envelope of
such transfer functions. Using the Bode envelope
and classical controller design methods, robust
controllers are designed for uncertain systems.

The paper is organized as follows: In Section 2,
a review of some fundamental results related to
frequency response computation of uncertain sys-
tems which have been developed in the field of
parametric robust control is given. The construc-
tion of the Bode envelope of an uncertain transfer
function of the form of Eq.(1) is given in Section 3.
Robust stability analysis and the design of robust
controllers are discussed in Section 4. Section 5
gives some concluding remarks.

val transfer functions are studied in (Bailey and
Panzer, 1988; Bartlett, et al., 1993; Hollot and
Tempo, 1994; Keel and Bhattacharyya, 1994 and
references therein). However, the interval uncer-
tainty structure is the simplest one. In a general
case, the coeflicients of an uncertain polynomial
may be affine linear, multilinear or polynomic
functions. There are some important results in
the literature when the uncertain transfer func-
tion has a more complex uncertainty structure
than the interval one. For example, in Bailey and
Hui (1989), it was assumed that the numerator
and the denominator polynomials of the transfer
function of the system were independent poly-
nomials with affine linear uncertainty structure
and an angle sweeping technique was proposed in
order to compute the Nichols template boundary.
A 2g-convex parpolygonal approach was given in
Tan and Atherton (2000a) for frequency response
computation of control systems with affine linear
uncertainty. In (Fu, 1990; Bartlett, 1990), it was
assumed that the coeflicients of the numerator and
the denominator polynomials of a transfer func-
tion with affine linear uncertainty were correlated
with each other and it was shown that the Nyquist
envelope was contained in the set obtained by
mapping the exposed edges of the uncertainty box
in the complex plane. Some improvements of the
results of (Fu, 1990; Bartlett, 1990) were given
in Bartlett (1993) for computing the Bode and
Nyquist envelopes of uncertain systems. The con-
cept of tree structured decomposition has been in-
troduced in Barmish, et al. (1990) to compute the
value set of complicated transfer functions. The
construction of the value set of uncertain transfer



functions in factored real form has been studied
in Gutman, et al. (1994). The computation of the
Bode envelopes and design of robust controllers
for uncertain transfer functions has been studied

in Tan and Atherton (2000b).

3. CONSTRUCTION OF THE BODE
ENVELOPES

This section gives a procedure for the construction
of the magnitude and phase envelopes of the
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It can be seen that G1(s) of Eq. (4) has uncertain
complex poles and zeros. For clarity of presenta-

uncertain transfer function of Eq.(1). Write Eq.(1)
as

tion, consider a standard second order system as
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where (€[(, (] and wo€[wy,ws]. Then the magni-
tude and phase extremums of this standard second
order system can be computed as follows:

and
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The numerator and denominator polynomials of
Ga(s) of Eq. (5) are multiplies of independent
first order uncertain polynomials. Consider an un-
certain real pole p(s) = 1+ sT where T€[T,T].
For s = jw* (w*€[0,00)), the real and imagi-
nary parts of this uncertain pole can be writ-
ten as Re[p(w*)] = 1 and Tw*<Im[p(w*)]<Tw*.
Therefore, the value set of p(s) at s = jw*
is a straight line parallel to the imaginary axis
with end(vertex) points vy (jw*) = 1 + jTw* and
va(jw*) = 14 jTw*. Thus, the magnitude and
phase extremums of p(s) at s = jw* can be
written as
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| = min(|oi (jw")|, [v2(jw™)])
| = mazarg(arglv: (jeo*)],
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minarg[p(jw”)] = minarg(arg[vi (jw*)],
arglva (jw*))) (6)
For uncertain real zeros the same result can be ob-

tained. Then the magnitude extremums of Gz (s)
are
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and the phase extremums are
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The maximum value of the gain at wpmin is

1
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and the gain remains constant at this value until
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The minimum phase for we[0,wg) is
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From these results, the Bode envelopes of G(s) of
Eq. (1) can be obtained from

Example 2: In this example the application of the
proposed method for determining the maximum
gain of transfer function

Kw3

Gls) = 5(82 4+ 2Cwos + w3)

(22)

to maintain stability for wo€[1.5,1.8] and (€[0.3,
0.8] is illustrated. For this example, one can
use the Routh stability criterion and get K <
2¢wi Jwg which gives K < 0.625 after overbound-
ing the parameters (using interval arithmetic).
However, for K = 0.85, the Bode envelopes are
shown in Figure 7?7 where one can see that the

max|G(s)| = max|Gy(8)| - max|G2(s)]

system just becomes unstable for this value of

min|G(s)| = min|G1(s)| - min|Ga(s)|
mazarg[G(s)] = mazarg[Gi(s)] + mazarg[Ga(s)]

K. Therelore, the approach of this paper gives
maximum value of K as 0.85 which is greater than
0.625. However, one may say that the difference

minarg|G(s)] = minarg|G1(s)] + minarg|Ga(s)]
(20)

is not big. Let assume that there is an uncertain
real pole of the form 1+ T's where T€[0.2,0.5]
instead of integrator. Then, the Routh criterion

Ezample 1: Let the plant transfer function be

gives K < ((2¢woT + 1)(2¢wo + waT)Jw2T) —

e
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G(s) = (21)

where wp€[0.8,1.6] and (€[0.5,1.2]. Overbound-
ing the parameters, the following interval transfer
function G(s) = ([0.64,2.56])/(s* + [0.8,3.84]s +
[0.64,2.56]) is obtained. The Bode envelopes of
the system using the method given above(solid
line) and the Bode envelopes of the overbounded
system(dotted line) are shown in Figure ?7. From
Figure 77, it is clear that the method of this paper
gives a much narrower Bode envelopes.
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1. After overbounding the uncertain parameters,
it is computed that K < —0.016 for stability.
Therefore, there is not any positive value of K for
stability. On the other hand, the Bode envelopes
for K = 1.19 are shown in Figure 7?7 which clearly
show that the system is stable for K < 1.19. It
is clear that the method presented in this paper
gives a large value for K compared with the over-
bounding one.
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4. APPLICATION OF THE RESULTS

Once the Bode envelope of an uncertain process
has been constructed, it can then be used to
check the robust stability and to design robust
controllers by classical methods as shown in the
following examples.

Ezxample 3: Let the plant transfer function be

K

G = ST T Dhs 1 1)

(23)

where K€[2.6,3.5], T1€[0.32,0.44] and T»€[0.1,
0.14]. The objective is to design a lead controller
of the form

Ts+1

Cle) = aTs+1’

O<a<xl (24)

for which the compensated overall system has
a phase margin of 45°. The Bode envelope of
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where K€[8,10], L1€]0.9,1.3], T1€[1.5,2.3], To€
[0.5,0.7], T5€]0.1,0.3] and T4€[0.15,0.2]. The aim
is to design a PI controller of the form

(30)

which guarantees that the entire family has a
phase margin of at least 45°. From Figure 77 it
can be seen that the new maximum gain crossover
frequency of the family should be moved to wy =
2.21rad/sec where

Fig. 3. Bode envelopes for K = 1.19

180 + minarg[G(jw1 )|~50° (31)

the uncompensated system is shown in Figure 7?7
where the minimum phase margin is equal to 20°.
In order to obtain the required phase margin then

The maximum magnitude of G(s) at s = juw is
14.8db. Thus, from —20log10 K, = maz|G(juw )| =
14.8db, K, = 0.18. One can choose the corner

45° = 20 + ¢y — 15° (25)

where 15° is the additional phase estimate.
Eq.(25) gives ¢, = 40° and o« is found from
o = (1 — singm) /(1 + singy,) giving o = 0.22.

frequency K;/K, to be one decade below w; in
order to ensure that the phase lag of the PI com-
pensator only affects the phase of the compen-
sated system at w; by approximately 5° allowed
in Eq.(31). Therefore, from K; = (v /10)K, =
(2.21/10)0.18 = 0.04. Thus, the designed PI con-

From

maz|G(jwm)| = —10log1o(1/a) = —6.57db (26)

giving wy,~4.15rad/sec. Since

1
= 27
Wm = = (27)
this gives T' = 0.5 and the lead controller is
0.55+1
C) = Gits+1 (28)

From Figure ?? it can be seen that the mini-
mum phase margin of the compensated system is
greater than 42°.

50

troller is
_ 0.185+0.04

S

C(s) (32)

From Figure ?? it can be seen that the mini-
mum phase margin of the compensated system is
greater than 45°.
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FEzxzample 4: Consider

_ K(Lis+1)
Gls) = (Ths + 1)(Tos + 1)(Tss + 1)(Tus + 1) (29)

Example 5: Consider a plant with

K —TS8
) = T DT 1 1° (33)

where K€[0.6,1.4], T1€[0.4,0.6], T>€[1.6, 2.4] and
7€[0.3,0.6]. The objective is to find the parame-
ters of a PID controller of the form

O(s) = K,(1 + % + 8Ty) (34)

using the critical point information, critical fre-
quency w,. and critical gain K., only. There are



several approaches to designing(tuning) a con-
troller given w, and K. for a process. One of the
simplest approaches, although not recommended
if the set point response has to have small over-
shoot, is the Ziegler-Nichols approach which sug-
gests that for a PID controller of the form of
Eq.(34), K, = 06K,, T; = 0.5T, and T; = 4T,
where T, = 27 /w,.

From the uncompensated Bode envelope shown in
Figure 77, it can be seen that the frequency where
the minimum gain margin is achieved is equal to
1.71rad/sec and at this frequency the minimum
gain margin of the family is equal to 7.2db. From,
20log10 K, = 7.2db, one gets K. = 2.3. Thus, using
the Z-N approach, the following PID controller is
designed

1.17¢%2 + 2.54s + 1.38
Cls) = 1.84s

(35)

From the Bode envelopes of Figure ?7 it was found

REFERENCES

Bailey, F. N. and D. Panzer (1988). A fast al-
gorithm for computing interval rational func-
tions. Proc. Amer. Contr. Conf., 22-23.

Bailey, F. N. and C. H. Hui (1989). A fast algo-
rithm for computing parmetric rational func-
tions. IEEE Trans. Automat. Contr., 1209-
1212.

Barmish, B. R., J. E. Ackermann and H. Hu
(1990). The tree structured decomposition:
A new approach to robust stability analysis.
Proc. Conf. Infor. Sci. Syst. Princeton Univ.

Barmish, B. R. (1994). New Tools for Robustness
of Linear Systems. MacMillan.

Bartlett, A. C., C. V. Hollot and H. Lin (1988).
Root location of an entire polytope of poly-
nomials: it suffices to check the edges. Math-
ematics of controls, Signals and Systems, 1,
61-71.

Bartlett, A. C. (1990). Nyquist, Bode and Nichols
plots of uncertain systems. Proc. Amer.

that the phase margin of the compensated system

Contr. Conf., 2033-2036.

is greater than 46° and the gain margin is greater
than 6.7db(2.16).

50

H
107 10° 10'
Frequency(rad/sec)

Phase deg

0
Frequency(rad/sec)

Fig. 6. Bode envelopes(-uncomp., ...comp)

5. CONCLUSION

Lag/lead, PT and PID controllers are popular and
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larity of these types of controllers is due to their
simplicity and satisfactory performance for a wide
class of systems. In classical control engineering,
design methods for these types of controllers are
based on a plant with fixed parameters. However,
most practical systems contain uncertainties. In
this paper, the design of robust controllers for
real uncertain systems has been studied. A new
method has been presented for the computation
of the Bode envelopes of an uncertain transfer
function of the form of Eq.(1). Based on the Bode
envelope, robust lead, PI and PID controllers have
been designed for different uncertain systems.
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