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1. INTRODUCTION.

Wheeled mobile robots are nonholonomic systems
because the velocities along the reference axis
satisfy non integrable constraints. Trailer-like sys-
tems constitute a generalization of mobile robots.
They are composed of a mobile robot, and sev-
eral trailers pulled by the mobile robot. Trailer
systems satisfy nonholonomic restrictions as well.

The development of mathematical models to de-
scribe the properties of wheeled mobile robots
without trailers has been widely studied, see
for instance, (Campion, 1996; Canudas de Witt,
1996). In these works the models were obtained
under non slipping assumptions for the robot
wheels.

There are two models of trailer systems frequently
considered in the literature, the standard n-trailer
and the general n-trailer (Rouchon, 1993; Bush-
nell, 1993; Altafini, 1998; Lamiraux, 1999). The
standard n-trailer systems has been extensively
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studied because their kinematic model is written
in a simple recursive form. The kinematic model of
general n-trailer systems are closer to real trailers
and they can be found also in the literature. These
two models are widely studied and methods of
exact linearization have been proposed for them.
For example, in (Rouchon, 1993), the general 1-
trailer system is shown to be differentially flat.

In this paper a class of multi steered general n-
trailer system is introduced. This system consist
of a wheeled mobile robot with fixed traction
wheels and n trailers with steered direction. This
system is a generalization of the standard n-trailer
systems and general n-trailer systems.

This paper address two main topics. First the
modeling of a class of multi steered general n-
trailer model is addressed. Second, it is shown
that the this system is completely linearizable by
dynamic state feedback. The linearizability of the
kinematic model is established by following the
approach presented in (Aranda-Bricaire, 1995)

The paper is organized as follows. In Section 2,
the modelling of a class of multi steered general
n-trailer is presented. In Section 3 a structural
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Fig. 1. Multi steered general n-trailer system.

analysis of this system is presented, showing that
it admits a linearizing output. In section 4 the
explicit design of the dynamic compensator is
presented. Finally, some conclusions are given in
Section 5.

2. MODELING.

Two models have been widely studied in the lit-
erature, the standard and general n-trailer sys-
tems. These models possess two control variables;
namely, the linear and angular velocities of the
tractor. The multi steered general n-trailer that
is proposed in this work is intended to have fur-
ther control variables, corresponding to steering
direction of the trailers.

In this Section the model of a multi steered trailer
is developed, for which all the trailers possess
actuated wheels. The obtained model can be easily
adapted to cope with the case of a n-trailer
system without all the direction wheel actuated.
The model also includes as particular cases the
standard and general n-trailer models.

The multi steered general n-trailer considered in
this work is shown in Figure 1. Where for simplic-
ity, just the first two and last two trailers are de-
picted.The development of the general model will
be done in two steps. First, the kinematic model of
the steering mobile robot will be presented as an
independent system. Second, a kinematic model
corresponding to each trailer will be developed.

The kinematic model of multi steered general n-
trailer consists of three state variables to represent
the position and orientation of the tractor with
respect to the reference axis, and two additional
variables for each trailer to represent their orienta-
tion with respect to the previous trailer and their
steering direction (orientation of the wheels axis).
More precisely, a fully actuated multi steered gen-
eral n-trailer possesses n + 2 input variables and
2n+ 3 state variables.

2.1 Kinematic model of the tractor.

In Figure 2 it is shown the tractor considered in
this work. Simple geometric considerations pro-
duce

Fig. 2. Wheeled mobile robot with two fixed
wheels.

Fig. 3. (i− 1)-th. and i-th. trailer of the multi
steered general n-trailer system.

ẋ1 = u1 cos θ0
ẋ2 = u1 sin θ0
θ̇0 = u2,

(1)

where the inputs u1, u2 represent, respectively,
the linear and angular velocities. The state vari-
ables (x1, x2, θ0) correspond to the position and
orientation of the robot.

2.2 Trailers kinematic model.

In order to obtain the kinematic model of the i-th
trailer, consider the i-th and the (i− 1)-th trailers
in Figure 3.

The notations in Figure 3 are as follows: vOi ,
vPi−1 , and vPi represent, respectively, the linear
velocities of the points Oi, Pi−1 and Pi; vi−1
and vi represent the magnitude of vPi−1 and
vPi ; ωi−1 and ωi represent the angular velocities
of the i − 1-th and i-th trailers; rOi/Pi−1 and
rOi/Pi

represent, respectively, the position vector
of the point Oi with respect to the points Pi−1
and Pi. Finally, ̂ and ı̂ are unitary vectors along
the axis X1 and X2, and k̂ is a unitary vector
perpendicular to the plane on which the vehicle
moves.



The linear velocity vOi of the pointOi considered
as a part of the (i− 1)-th trailer is given by

vOi = vPi−1 + ωi−1 × rOi/Pi−1 (2)

where,

ωi−1 = k̂θ̇i−1
rOi/Pi−1 = −d0i−1(̂ı cos θi−1 + ̂ sin θi−1),

and

vPi−1 = vi−1 [̂ı cos
¡
βi−1 + θi−1

¢
+ ̂ sin

¡
βi−1 + θi−1

¢
].

In a similar manner, the linear velocity of the
point Oi, considered as part of the i-th trailer is
given by

vOi
= vPi

+ ωi × rOi/Pi
(3)

where,

ωi = k̂θ̇i
rOi/Pi

= −d0i (̂ı cos θi + ̂ sin θi)

and

vPi = vi [̂ı cos (βi + θi) + ̂ sin (βi + θi)] .

Combining the expressions (2) and (3) it is possi-
ble to obtain

vi =
vi−1 cos

¡
φi + βi−1

¢
+ θ̇i−1d0i−1 sinφi

cosβi
(4)

θ̇i =
vi−1 sin

¡
αi + βi−1

¢− θ̇i−1d0i−1 cosαi
di cosβi

, (5)

where φi = θi−1 − θi, αi = φi − βi and β0 = 0.

Finally, the kinematic model of the i-th trailer can
be written in recursive form as,

θ̇i =
vi−1 sin

¡
αi + βi−1

¢− θ̇i−1d0i−1 cosαi
di cosβi

βi = ui+2.

Proposition 2.1. The recursive representation
of θ̇i can be rewritten as

θ̇i = ai(·)u1 + bi(·)u2,
where ai(·) and bi(·) are functions of (θ0, ..., θi,
β1, ...,βi) for i = 1, 2, ..., n.

Proof. The proof will be done by induction. First,
for i = 1, equation (4) and (5) produce,

θ̇1 =
sinα1
d1 cosβ1

u1 − d
0
0 cosα1
d1 cosβ1

u2

v1 =
cosφ1
cosβ1

u1 +
d00 sinφ1
cosβ1

u2,

that can be rewritten as

θ̇1 = a1u1 + b1u2
v1 = r1u1 + q1u2.

For the k-step assume that,

θ̇k = aku1 + bku2 (6)
vk = rku1 + qku2.

Then at the (k + 1)-step, considering again equa-
tions (4) and (5),

θ̇k+1 =
vk sin (αk+1 + βk)− θ̇kd

0
k cosαk+1

dk+1 cosβk+1

vk+1 =
vk cos

¡
φk+1 + βk

¢
+ θ̇kd

0
k sinφk+1

cosβk+1
.

Substitution of (6) in the above equation pro-
duces,

θ̇k+1 =
rk sin (αk+1 + βk)− akd0k cosαk+1

dk+1 cosβk+1
u1

+
qk sin (αk+1 + βk)− bkd0k cosαk+1

dk+1 cosβk+1
u2

vk+1 =
rk cos

¡
φk+1 + βk

¢
+ akd

0
k sinφk+1

cosβk+1
u1

+
qk cos

¡
φk+1 + βk

¢
+ bkd

0
k sinφk+1

cosβk+1
u2,

or equivalently,

θ̇k+1 = ak+1u1 + bk+1u2 (7)
vk+1 = rk+1u1 + qk+1u2.

Thus, the proposition is proven.

2.3 Complete kinematic model.

From the tractor model (1) and the Proposition
2.1, the complete kinematic model of the multi
steered general n-trailer system can now be given
by

ẋ = g (x)u, (8)

where

x =
£
x1 x2 θ0 θ1 · · · θn β1 . . . βn

¤T
u =

£
u1 · · · un+2

¤T

g (x) =



cos θ0 0
sin θ0 0

02×n

a0 b0
...

...
an bn

0(n+1)×n

0n×2 In×n


.

and



a0 = 0, b0 = 1, q0 = 0, r0 = 1

ai =
ri−1 sin

¡
αi + βi−1

¢− ai−1d0i−1 cosαi
di cosβi

bi =
qi−1 sin

¡
αi + βi−1

¢− bi−1d0i−1 cosαi
di cosβi

ri =
ri−1 cos

¡
φi + βi−1

¢
+ ai−1d0i−1 sinφi

cosβi

qi =
qi−1 cos

¡
φi + βi−1

¢
+ bi−1d0i−1 sinφi

cosβi

Note that the recursive system (8) has been writ-
ten as a nonlinear control affine system. The prop-
erties of this class of systems have been widely
treated in the literature (Isidori, 1995). Also no-
tice that system (8) is driftless. This property
comes from the fact that any position in an equi-
librium point if ui = 0, for i = 1, ..., n+ 2.

Remark 2.1. The model (8) include as a partic-
ular cases:

(1) The general n-trailer system without all
steered trailers is obtained by letting βj = 0
for each j-th trailer without actuated wheels.

(2) The model of the general n-trailer is obtained
by letting βi = 0, for i = 1, 2, ..., n.

(3) The model of the standard n-trailer is ob-
tained by letting βi = 0, d0i = 0, for i =
1, 2, ..., n.

3. LINEARIZATION PROPERTIES.

This Section addresses the feedback linearization
problem for the kinematic model of the multi
steered general n-trailer system (8). In particular,
it will be shown that this system has a linearizing
output.

Definition 3.1. An output function is said to
be a linearizing output if it satisfies the following
conditions:

(1) The system is right-invertible with respect to
this output function.

(2) The system possesses trivial zero dynamics
with respect to this output.

For more details about the notion of linearizing
output the reader is referred to (Aranda-Bricaire,
1995; Isidori, 1986).

In the event that a system admits a linearizing
output, the so-called standard noninteracting feed-
back linearizes both the input-output and input-
state responses of the system.

In what follows it will be established the lineariza-
tion properties of the multi steered general n-
trailer.

In order to establish the main result, the following
technical results are needed.

Lemma 3.1. The functions ∂θ̇i
∂βi

are generically
different from zero.

Corollary 3.1. The second order time deriva-
tives ẍ1 and ẍ2 are linear functions of u2 and
u̇1. The second order time derivatives θ̈i are linear
functions of u1, . . . , ui+2, u̇1, and u̇2.

Lemma 3.1 and Corollary 3.1 can be proved di-
rectly by obtaining the second order derivatives
of x1, x2 and θi.

Theorem 3.1. Consider the multi steered gen-
eral n-trailer system (8), and the output function

y = h (x) = [x1, x2, θ1, ..., θn]
T . (9)

Then, the system (8)-(9) is right-invertible and
possesses trivial zero dynamics. As a consequence
system (8)-(9) is fully linearizable by dynamic
state feedback.

Proof. Recall that dim x = 2n + 3, and
dim u = n+ 2. Define the sequence of subspaces
Ek = span

©
dx, dy, ..., dy(k)

ª
, k ≥ 0. Following

(Di Benedetto, 1989), system (8)-(9) is invertible
if there exist an integer 0 ≤ k ≤ 2n+3, such that

dimEk − dimEk−1 = n+ 2.

Consider now the following sets of one-forms:

dx = {dx1, dx2, dθ0, ..., dθn, dβ1, ..., dβn}
dy = {dx1, dx2, dθ1, ..., dθn}
dẏ =

n
dẋ1, dẋ2, dθ̇1, ..., dθ̇n

o
dÿ =

n
dẍ1, dẍ2, dθ̈1, ..., dθ̈n

o
.

From equation (8) it is possible to write,

dẏ ∈ span {dθ0, ..., dθi, dβ1, ..., dβi, du1, du2} .

To obtain dÿ, consider first

ẍ1 = −u1u2 sin θ0 + u̇1 cos θ0
ẍ2 = u1u2 cos θ0 + u̇1 sin θ0

θ̈i = biu̇2 + aiu̇1 +
iX

j=0

∂θ̇i
∂θj

θ̇j +
iX

j=1

∂θ̇i
∂βj

uj+2,

i = 1, ..., n,

where,

∂θ̇i
∂βi

= u1
∂ai
∂βi

+ u2
∂bi
∂βi

.

Then, it is possible to see that,

dÿ ∈ span {dẏ, du3, ..., dun+2, du̇1, du̇2} .



Therefore, from the above developments the sub-
spaces Ek are obtained as,

E0 = span {dx, dy}
= span {dx1, dx2, dθ0, ..., dθn, dβ1, ..., dβn}

E1 = span {dx, dy, dẏ}
= E0 ⊕ span {du1, du2}

E2 = span {dx, dy, dẏ, dÿ}
= E1 ⊕ span {du3, ..., dun+2, du̇1, du̇2} ,

that produce,

dimE0 = 2n+ 3

dimE1 = 2n+ 5

dimE2 = 3n+ 7.

Since, for k = 2,

dimE2 − dimE1 = n+ 2
then, system (8)-(9) is right invertible.

DefineX = span {dx}, and Y = span©dy(k), k ≥ 0ª.
It is well known (see for instance (Aranda-
Bricaire, 1995)), that the system (8)-(9) does not
possess zero dynamics if

dim (X ∩ Y ) = 2n+ 3.
Noting that,

X = span {dx}
= span {dx1, dx2, dθ0, ..., dθn, dβ1, ..., dβn}

Y1 = span {dy, dẏ}
= span {dx1, dx2, dθ0, ..., dθn, dβ1, ..., dβn, du1, du2} ,

since Y1 ⊂ Y , it follows that
dim (X ∩ Y ) = 2n+ 3.

Then, system (8)-(9) has trivial zero dynamics.

4. LINEARIZING FEEDBACK DESIGN.

This section addresses the design of a linearizing
feedback for the kinematic model (8)-(9) of the
multi steered general n-trailer system.

The decupling matrix of the system is given by

D (θ0, ..., θn,β1, ...,βn) =


cos θ0 0
sin θ0 0
a1 b1
...

...
an bn

0n+2×n

 .

Clearly the matrix D (·) is noninvrtible. There-
fore, it is not possible to decuple the input-output
response of the system by static feedback. Then a
dynamic extension of the system is necessary.

The dynamic extension consist in adding two pure
integrators in front of the input u1, and one pure
integrator in front of the input u2. That is:

u1 = ξ1, ξ̇1 = ξ3, ξ̇3 = w1,

u2 = ξ2, ξ̇2 = w2, (10)

ui+2 = wi+2, i = 1, 2, ..., n

where w = (w1, ..., wn+2)
T is the new input vector

for the extended system. This dynamic extension
produce a simpler singular manifold that the one
produced by classic dynamic extension algorithm
(Isidori, 1995).

Taking successive time-derivatives of the output
function (9) along the trayectories of the extended
system (8)-(10) produces

y
(3)
1

y
(3)
2

y
(2)
3
...

y
(2)
n+2

 =

x
(3)
1

x
(3)
2

θ
(2)
1
...

θ(2)n

 = A (x, ξ)w +F (x, ξ) (11)

where

A =

·
A11 02×n
A21 A22

¸

F =



−2ξ2ξ3 sin θ0 − ξ1ξ
2
2 cos θ0

2ξ2ξ3 cos θ0 − ξ1ξ
2
2 sin θ0

a1ξ3 +
1X
j=0

∂θ̇1
∂θj

θ̇j

...

anξ3 +
nX
j=0

∂θ̇1
∂θj

θ̇j


,

and

A11 =

·
cos θ0 ξ1 sin θ0
sin θ0 ξ1 cos θ0

¸

A21 =

 0 b1...
...

0 bn



A22 =



∂θ̇1
∂β1

0 ... 0

∂θ̇2
∂β1

∂θ̇2
∂β2

... 0

...
...

...
...

∂θ̇n
∂β1

∂θ̇n
∂β2

...
∂θ̇n
∂βn


.

Proposition 4.1. The matrix A (x) is generi-
cally nonsingular.

Proof. First note that

detA11 = ξ1.

Next, from Lemma 3.1, it can be conclude that



detA22 =
nY
j=1

∂θ̇j
∂βj

is generically different from zero, then

detA (x, ξ) = ξ1

nY
j=1

∂θ̇j
∂βj

is generically different from zero.

Then from (11) the dynamic linearizing feedback
is given by

w = A (x, ξ)−1 [v −F (x, ξ)] , (12)

where v = (v1, ..., vn+2) is a new control variable.

Remark 4.1. The relative degree of the extended
system is {3, 3, 2, ..., 2}, and its sum is 2n+6, then
since the dimension of the system (8)-(9) is 2n+3,
and the dimension of the dynamic compensator
is 3, then the linearizing feedback (12) linearize
completely the system.

Remark 4.2. The control law (12) presents a
singularity or, more precisely, is undefined when
the state belongs to the so called singular manifold.
The singular manifold is defined by

S =

(x, ξ) ∈ R2n+6 | ξ1
nY
j=1

∂θ̇j
∂βj

= 0

 . (13)

Due to the existence of the singular manifold (13),
the control law (12) is not globally defined. Since
this paper is devoted to the structural generic
properties of the multisteeered general n-trailer,
we have decided not to deal with the problem
of singularities. This problem was addressed in a
future paper, where a discontinuous control law
was proposed which allows global motion planning
for the multisteered general n-trailer.

5. CONCLUSIONS.

In this paper it is presented the kinematic model
of a multi steered general n-trailer system. It
is shown that this model includes as a particu-
lar cases the general and the standard n-trailer
systems previously studied in the literature. The
multi steered general n-trailer system presents a
general form of a model for trailer systems. This
can be used to obtain another trailer models with
less steered directions and study their properties.
It is shown that this trailer systems can be writ-
ten as nonlinear control affine systems. It also is
proven that the system is completely linearizable
by dynamic state feedback under the assumption
that all the steering wheels are actuated.
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