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Abstract: This paper is concerned with finite horizon risk-sensitive filtering,
prediction and smoothing problem for discrete-time singular systems. The
problem is first con verted to a minimax optimization of certain indefinite
quadratic form. It is sho wn that a risk-sensitive estimator can be obtained
by ensuring the minimum of the indefinite quadratic form to be maximum
(minimum) when the risk-sensitivity parameter 6 is negative (positive). An
auxiliary state-space signal model and innovation sequences in Krein space are
introduced to simplify our derivation. The finite horizon estimator is given based
on a recursive Riccati equation by constructing a appropriate state space model.
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1. INTRODUCTION

The analysis and design of linear singular sys-
tems ha vea rich and gro wing literature (Lewis
and Mertzios, 1989, Cobb, 1989) in the last few
years. P art of the motivations for this activit y
comes from applications arising from robotic, eco-
nomic, electric and chemical systems (Lewis and
Mertzios, 1989). More recently, recursiv e state es-
timation for singular systems has been the subject
of several studies (Dai, 1989, Nikoukhah et al.,
1992, Zhang et al., 1998). In (Dai, 1989), the
singular system under consideration is first trans-
formed into a normal form via state augmentation
and then the filtering problem is solved using stan-
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dard results for nonsingular systems. A general
formulation of a discrete-time filtering problem
for singular systems has been given by Nikoukhah
et al (1992). By applying a “dual approach” to
estimation, a so-called “3-block” form for the op-
timal filter is derived based on a Riccati difference
equation of a 3-block form.

Using an innovation analysis method in time do-
main together with an output predictor, Zhang
et al (1998) proposed a unified approach for filter-
ing, smoothing and prediction problems for singu-
lar systems. The estimators are derived by using
an ARMA innovation model in Hilbert space and
calculated based on one spectral factorization.

It should be noted that the aforementioned work
concentrated on the Hs state estimation. A more
general estimation problem is to minimize an ex-



ponential function of the squared filtering error, or
its expectation, thus penalizing all the higher or-
der moments of the estimation error energy. This
problem is termed a risk-sensitive filtering prob-
lem. The risk-sensitive performance was first used
by Jacobson (1973) and pursued further by Whit-
tle (1990). As opposed to the H, filtering (risk-
neutral filtering) which minimizes a quadratic er-
ror criterion, risk-sensitive filtering robustifies the
filter against plant and noise uncertainties. It is
worth pointing out that all existing results on
the risk sensitive estimation have been focused on
nonsingular systems.

In this paper we shall consider the finite hori-
zon risk-sensitive filtering, prediction and smooth-
ing problems for discrete-time singular systems.
The risk-sensitive estimation is then shown to be
equivalent to a minimax optimization of an indef-
inite quadratic form. To derive the risk-sensitive
estimator through the minimax optimization, an
appropriate auxiliary stochastic state-space model
and the innovation sequence in Krein space are
introduced. The finite horizon risk sensitive esti-
mator is given in terms of one recursive Riccati
equation through state augmentation.

We end this section by recalling the definition of
Krein space (Hassibi et al., 1998).

Definition An abstract vector space {i,(-,-)}
that satisfies the following requirements is called
a Krein Space:
1) K is a linear space over C, the set of complex
numbers.
2) There exists a bilinear form (-,
that

a) (y,x) = (x,y)"

b) (ax + by, u) = a(x, u) + b(y, u)
3) The vector space K admits a direct orthogonal
sum decomposition

-} € Con K such

K=Kyok_ (1)

such that {Ki,(-,-)} and {K_, (-,-)} are Hilbert
spaces, and (x,y) = 0, for any x € K4 and
yeKr_.

It should be noted that Hilbert spaces satisfy not
only 1) and 2), but also the requirement that
(x,x) > 0, for x # 0. In Krein Space we have
x # 0 such that (x,x) =0 or (x,x) <0.

Whenever a Krein Space element and a Euclidean
space element satisfy the same set of constrains,
we shall denote them by the same letter with the
former being bold and the latter being normal.

2. PROBLEM STATEMENT

Counsider a stochastic linear time-invariant system
described by the following discrete-time model:

Mx(t + 1) = ®x(t) + Ce(t) (2
(0=H(>+wa 3
2(t) = Lx(1) (4)

where x(t) € R",e(t) € R",y(t) € R™, v(t) €
R™ and z(t) € R® represent the state, system
stochastic noise, measurement output, measure-
ment noise and the signal to be estimated, re-
spectively. It is assumed that e(t) and v(¢) are
zero mean mutually uncorrelated Gaussian white
noises with (e(k),e(j)) = Ele(k)el (j)] = Qcdk;
and (v(k),v(5)) = E[v(k)vT(j)] = Qu6xj, where
E is the mathematical expectation, dy; is the
Kronecker delta and T denotes the transpose. We
assume that @, > 0. The following assumptions
will be made for (2)-(4).

Assumption 2.1 M is singular but the system
(2) is regular, i.e. det(zM — ®) Z 0.

In this paper we consider a risk-sensitive estima-
tion problem for the system (2)-(4). More pre-
cisely, the problem is stated as follows:

Finite Horizon Risk-Sensitive Estimation:
Given a non-zero real scalar 6 and the observation
{y(i)}_,, find an estimate of z(t +1) = Lx(t +1),
denoted as z(t +1]t), t =0,1,---,N, such that
the following cost is minimized:

9 0
in (=210 | Eezp (2D
{i(rfizrfw}( 909[ emp( 2 N)D )

where Dy is given by

N
Dy = Z [Z(t+1|t) — Lx(t + 1)]"

t=

[z (t+l|t)—Lx(t+l)] (6)
Observe that the above estimation problems in-
clude three cases, i.e. I = 0,1 > 0 and [ < 0 which
correspond to the cases of filtering, prediction and
smoothing, respectively.

3. PRELIMINARIES

In this section, we shall first transform the sin-
gular signal model (2)-(3) into a nonsingular but
non-causal signal model. We shall also establish an
equivalence between the risk-sensitive estimation
problem and a minimax optimization.

First, under Assumption 2.1, there exist nonsin-
gular matrices ; nd P; such that (Cobb, 1984)

— In1 0 _ <I>1 0
QlMP1—|:O M1:|7 Q1¢P1—[0 In2:|

(7)



where n; +ny = n, M; is a nilpotent matrix with
index A, i.e. Ml)‘0 =0, M1>\o—1 £0.

The system (2)-(3) is restricted system equivalent
(RSE) to (Zhang et al., 1998, Cobb, 1084):

X1(t+1) =21%:(t) + [re(t) (8)
Mixo(t + 1) =X2(t) + Iae(t) (9)
y(t) = Hlfcl (t) + Hgfiz(t) + V(t) (10)
where %, (t) € R™ and
o XK@ ] —1y
(0= | i) | = rixc,
[Fl} L, [Hi

It follows from (9) that

—TMe(t+1) —TPe(t +2) —
—T5e(t + o) (11)

X2(t+1)=

where
FEZ) :Mf_ll—‘% 1=1,2,---, X (12)

Hence, we have the following result.

Lemma 3.1 Under Assumption 2.1, the system
(2) and (3) is RSE to:

(t +1)=2x(t) + T(q)e(t) (13)
y(t) = Hx(t) + v(t) (14)
where
*= [(Iz)l g} , H=[H H],
D(q) =T© 4+ TWg 4 ... 4 PO o (15)
() — [IH P — _ {r?”] 1<i<)
(16)

and ¢ is the forward shift operator, i.e. ge(t) =
e(t+1).
Proof: The result follows trivially from (8) and

(11).

In the remainder of this section, we shall demon-
strate that the risk-sensitive estimation problem
can be converted into a minimax optimization
problem.

For a given [, let lp = maz{l + Ao — 1,0 — 1}.
Also, denote

et = col{e(0),e(1),---
Y = COl{y(O)7 y(1)> Tt

ve(t)}
y(B)} (17)

for any t > 0.

We recall the following lemma (Hassibi et al.,
1998, Whittle, 1990 ).

Lemma 3.2 The risk-sensitive filtering problem is
reduced to one of finding the estimator Z(¢t +1 | t)
such that

a) 6 > 0(risk — seeking) :

min { min

Jin(71(0 ) ks
) Lot ) o (@ )’eN“”’yN)} )

b) 8 < 0(risk — averse) :

i Jo (@10 cyn) K19
{23137§>}{ew+?31,?1<0> Ly (@1 )’6N+l°’yN)]E )

where

Jin (21(0), eni3yn) = 21 (0)II7 ' 21 (0)

N+lg N
+ > T Qe(t) + Y _[y(t) — Hz(1)]" Q"
x[y(t) — Hz(t)]
N

+oz (2t + 1 1) = La(t + )] [2(t + 1| t) — LE(t + )]
(20)

with

L=LpP (21)

4. RISK-SENSITIVE FILTERING,
PREDICTION AND SMOOTHING

In order to obtain an estimator which solves the
optimization problem in (18) or (19), we first con-

sider the problem of calculating ~ min
EN+10:Z1(0

Observe from (20) that J; v (Z1(0), ent1,; yN) can
be rewritten as

Jin(Z1(0), entip; YN)

N
ZUT(t)lev(t) + GZUIT(t + Du(t+1)
) (22)
where
v+ =20t+1]t)— La(t +1)
=z(t+1|t)-Lz(t+1) (23)

and L is as in (21).

JiN (Z1(0), ent105YN)-



Before proceeding further, we introduce the fol-
lowing short-hand notation

0=ty 70=[ 1)) €0
o(N

on =col {v(0),-- -, )} (25)
yn = col{y(0), ---, y(N)} (26)
(N +1) blocks
mz[%vejg]@”®[%vejgk”)
(N +1lp) blocks
Ro=Qce®- - ®Qe (28)

The use of (13)-(14), (17) and (23

0]

)- (26) gives

0]

entiy | =¥ [ enti, (29)
Lo ] Low ]
where ¥ is of the form:
I, 0 0
=10 Ity O (30)

v, W, W,
with ¥y € R((m+s)(N+1))x((m+s)(N+1)) jpyertable

From (22)-(29), it follows that

Jin(Z1(0), envio; UN)

:[MT{% Ifff]_l Lf;] (31)

where ¢ = ¥ and

[z] (0) eN-',—lo

I, 0 0
fe Tiggl _gl o gm0 |w’ (32)
RL R

S 0 0 Ry

Then we have the following results.

Lemma 4.1 Consider the system (2) and (3) and
the associated cost (5). Then, J; n(Z1(0), entio; Yn)
has a minimum with respect to {Z1(0), eny, } iff

R¢ — RegR; 'Rl > 0 (33)
Furthermore, the minimum is calculated as
TN (Gn) = InRy N (34)

Proof: Omitted.

Lemma 3.1 indicates that the risk-sensitive esti-
mation problem can be reduced to one of finding
the estimator {Z(t + 1 | t)} such that JPn(7n)
is minimum for # > 0 ( risk-seeking ) or maxi-
mum for § < 0 ( risk-averse ). To compute the

estimator, it is necessary for us to simplify (34).
To this end, we shall construct a stochastic sys-
tem with appropriate Gramians and introduce an
associated innovation sequence.

4.1 Stochastic system and innovation sequence in
Krein space

4.1.1. Stochastic system model in Krein space
First, associated with the stochastic system (13)
and (14) and in view of (23), we introduce

Zit+1|t)=Lx(t+1)+vi(t+1)

where v;(t) is a white noise with zero mean and
covariance Q,, = (v;(t),vi(t)) = 6711, and is
independent of e(t) and v(¢). Putting together (3)
with (35) and noting (24) yield

L“ﬂﬁﬂw}:[qéﬂ}xu+o+vu)@®

Observe that

CORTIE A PR R A
It is obvious that ()3 is indefinite when 68 < 0.
In this case, (36) is no longer a stochastic system
in Hilbert space but a stochastic system in Krein
space. Using the Krein space model (2) and (36),
noting (17) and (25), it is easy to verify that

<eN7 eN> = Re: <‘_’N; ‘_’N) = R; (38)

Then the use of (29) gives

< X1 (0) X1 (0)
en ) enN

@

Iy, 0 0
>=w 0 R, 0 |9o”
0 0 Ry

YN yN
(39)
which together with (32) implies that
Ry =(yn, ¥n) (40)

Then, by considering (34), the minimum of
Ji,n (Z1(0), ent3yn) s given by

TOn@N) = gk (In,9N) TN (41)
4.1.2. Inmovation sequence and an equivalent con-
dition for minimality  To simplify (41), we
introduce the innovation sequence of y:(t) =
{ y(?)
Z(t+1|t
error(Deng et al.,

)], i.e. the one-step ahead prediction

1996)

=Lx(t+1) + vi(t £35)



() =y, (¢t —1)

y
{ Cetin) 5D
(42)

z
~
~—
I
|—|
A
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~— ~—
[
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where y(¢ |t — 1) and z(¢t | t — 1) are respectively
obtained from the Krein space projections of y(t )
and #(t+1 | t) onto the linear space L{{y(i)}/_;
From (42), we obtain

w(t) = Lio¥(0) + -+ L1 §(t — 1) + §(2)
(43)
Then we have the following relation
wn = Lyyn (44)
where wy = [w1(0) wi(1) wl(N)] and
Ints 0 .. 0
LlO Im+s ot 0
Ly = . . .
Lno LNt Lts

Note that L,, is square and nonsingular and that
Ry can be calculated as

Ry = (yn,9N8) = L' Ry L" (45)
where
(N + 1) blocks
Ry = Qu(0) &+ & Qu(N) (46)

and @, (t) is the covariance matrix of the innova-
tion w(t).

We now present an equivalent result of Lemma 4.1
using the innovation sequence.

Lemma 4.2 Consider the system (2) and (3) and
the associated cost (20). Then, J; n(Z1(0), entiy; Yn)
has a minimum with respect to {Z1(0), enyi, } iff
Qu(t) (t = 0,1,---,N) and @; have the same
inertia, where Q3 is as in (37).

Furthermore, the minimum of J; x(Z1(0), en41,; yn)
can be given in terms of the innovation w(t) as

Tn(@ i ro10:0 | )

(47)
In this case, the risk-sensitive estimation problem
is to find the estimator 2(¢+1 | t) (¢ =0,1,---, N)

such JP v () is minimum for > 0 ( risk-seeking
) or maximum for < 0 ( risk-averse ).

Proof: Omitted.

4.2 Finite horizon risk-sensitive estimation

In this section the finite horizon estimators are
given based on the Lemma 4.2.
First, note that (13) can be rewritten as

x(t+1)
[F(O)

=0x(t+1—1)+ &1 (48)

where [ = ()] and

81 = [el(t+1—1) el(t+1+x—-1]"

satisfy
ét+l = Elét—ﬁ—lfl + Eze(t + l =+ )\0) (49)
with By =[0 0 0 1"
0o 1, 0 --- 0
o o I, --- 0
El — . : . c Rr(/\0+1)><7’(/\0+1)
0 0 0 I,
0 0 O 0

Then, the state space model of filtering (I = 0)
follows from (48)- (49) and (36)

= ® T H

it EJ M { ]
Similar, we obtain the following state space form
for the case of [ > 0

(t+1) = ®x(t) + &(t) (52)
{Z(tyﬁftl)l t)] B HI] X0 v 69)
where v(t) = v(t) and
x(t) = rg:%j)} , &(t) = {Eze(t-f-)\Zo-l-l-l-l)}
~_[@ r 0] H] [0 0 Tn
Sl 0o -0
with Ty, = [I,, 0 0], Hp = [0 a)*



0 I, O 0
0 0 Iy 0
M,=|: : : | e pmixmi
0 0 0 I,
0 0 O 0

For the case of smoothing [ < 0, we obtain the
state space model as

%(t + 1) = d%(t) + &(¢) (54)
y(t_l) _ Ig[ X v
EAI GO
wE?eV@)=VG—D,i@)=[iT@—J> e, xi(t)]
0
&(t) = | Ere(t+Xo—1+1)
0
N T A
s ) Bl e
with Ty = [I, 0 0] and
0 I, 0 0
0 0 I, 0 0
Ms= " : : S L= :
0 0 0 I, L
00 0 0

Theorem 4.1 Consider the system (2)-(4) satis-
fying Assumptions 2.1 and 2.2. For any given 6 >
0, the risk-seeking estimation problem always has
a solution. For any given § < 0, a solution for risk-

L o _ (@ O
averse estimation exists iff Q; = [ 0 91]}
and
_ Qs 0 I? T FT
Qu=| 4]+ || miar 1)

HPLT

— Qv+ﬁpth L ~
_{ o1+ LRL"| 0

LP.H"
have the same inertia for ¢t = 0,1,--- N, where

P =0P0" +Q; -

b«zmz

Sp AT LT)0Z1) [ ] pdT
(57)

with Py = (x(0),%(0)) In both cases the optimal
risk-sensitive filter, smoother or predictor is given
by

Ft+1t)y=Lat|t—1)+ LPHY(I+ HP,H")™
x[y(t) — HE(t | t — 1)) (58)

Ft+1]|t)=dx(t|t—1)+SRHT)(I+ HPHT)™!
x[y(t) — HE(t | t — 1)) (59)

5. CONCLUSION

In this paper, the finite horizon risk-sensitive esti-
mation problem for linear discrete time-invariant
singular systems has been solved for the first time.
A simple derivation technique based on a Krein
space signal model. The key behind the method is
to convert the singular model into a nonsingular
system through state augmentation. The result
involves solving a Riccati difference equation. It
7should be noted that the calculation for smooth-
ing and prediction estimation is complicated due
to the state augmentation.
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