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Abstract: This paper deals with the analysis of continuous and discrete time varying systems using
two unusual representations. These representations, based on time varying s-transform and time-
varying ztransform notions, prove to be highly efficient in the field of automatic control. They also
permit the extension of many well known theorems to time varying systems such as the initial and
final value theorems.
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1. INTRODUCTION coefficients. Section 3 deals with the representation of
discrete time varying systems with periodic coefficients.
Transfer functions and associated frequency response$ection 4 gives extensions of several well known
are powerful tools for the analysis and synthesis of theorems to time varying system.
stationary systems. Thus, several authors have extended
them to time varying systems. For example, Zadeh 2, TIME VARYING FREQUENCY RESPONSES
defined the system function notion (Zadeh, 1961), also

called in thii.pﬁpﬁr time varyingfs—transform notion |, the 1950s, Zadeh (Zadeh, 1961) demonstrated that
(TVST). to which the time varying frequency response |inoqr time varying systems can be described by TVSTs

TVFR) can be associated, and Jury defined the time . b
\(/aryinc; z-transform notion (TVZT) ( Ju)r/y, 1964). (also called systems functionl)s, t). TVSTs are linked

Many aspects of the definition of TVSTs and TVZTs {0 the impulse response of the systeit, ¢), which is
correspond to the definition of stationary equivalents. both a function of the time variabkeand of the point in
However there has been little interest in TVSTs and time { when the impulse is applied, by the relation :
TVZTs since Zadeh and Jury, for several reasons. o

First of all, the computation of the TVST or of the TVZT Hs)=8[ {1&)]= ¢S J' Ht&)e<dé . (1)
representing a time varying system proves to be very
difficult in the general case.

Also, the stability of a time varying system can not be This representation of time varying systems is
directly deduced from the poles of its TVST or its TVZT particularly attractive in the area of automatic control

(Gibson, 1963). . . because it allows the computation of the steady and
Finally, relations used to determine the transfer function transitory states of the system. Indeed,yif) is the

of the connection of several stationary systems, have no ;
equivalent for time varying systems (Gibson, 1963). output of a system described by the TVHE, 1), then

—00

. C+ joo
In this paper, TVSTs and TVZTs are used for the _ 1 t
analysis of time varying systems. These two tools are )= 27 j Hs) Ugelds, 2)
indeed used to extend many well known theorems to Cle
eg?ﬁe\{[ﬁ;ycl)rr\gmssystems, particularly the initial and final wherec denotes the convergence absciss&l( t) and

whereU(s) denotes the Laplace transform of the system

The paper is organized as follows. Section 2 deals with input. The computation of the TVST of a time varying
the representation of continuous time varying systemssystem is not easy in the general case. However, for
using TVSTs and three classes of systems are consideredome classes of systems several authors have provided
. time varying systems with periodic coefficients, time solutions.

varying systems with asymptotically constant

coefficients and time varying systems with polynomial



2.1. Time varying systems with periodic coefficients

We consider continuous time periodic systems
characterized by the state space description :

[ A 9
y(t) = clt)xt) ’

where u(t) O R, y(t) 0 R, x(t) O R™ and where
coefficients A(t), B(t) and C(t) are real-valued matrices
of appropriate dimensions. Matrices A(t), B(t) and C(t)
are periodic functions of time variable t, namely :

Alt)= At+T), Bt)=B(t+T). clt)=c(t+T). @

where period T represents the smallest value satisfying
relation (4). Matrices A(t), B(t) and C(t) are aso
supposed continuous on [0, T], respectively elements of
L3o,7], Lo, 7] and L3[0,T] and their derivatives
are supposed piecewise constant on [0, T]. Matrix A(t),
thus admits the following Fourier series expansion :

At)= Y Ak with wy =22, (5
KCZ T
Similar series expansions are also possible for matrices
B(t) and C(t), but using matrices B, and Cy ingtead of
matrix Ay.
As demonstrated by Zadeh, sysem (3) can be
represented by a TV ST, H(s, t), of the form :

H(st)= ZHk(s)ejk“’Ot ) (6)
kOZ

Theorem 1 (Sabatier et al, 1998)
Transmittances Hy(s) of relation (6) are given by
H=eN-A)1B ,if (N-A)leis, (7)

in which vectors H and B, and matrix A are
respectively given by :

G{T:[ H_l(S)Ho(S)Hl(S) ], (8)
BT:l... B,, B, By B B, ] (9)
o A Ay A,

A= . A A Ay ... (10)

Matrix € is defined as matrix A but usng Cy, and
N =blkdiag|(s+kap)lg) where 1, denotes the identity

matrix of dimension g.
O

2.2. Time varying systems with asymptotically constant
coefficients

We consider continuous systems characterized by a state
space description (3) where matrices A(t), B(t) and C(t)

are supposed continuous, bounded and analytic on R".
They also met the following relations :

lim Alt)= A, limB{t)=B;, limcC(t)=C., (1)
t-o too0 t oo
Ac, Bc and C¢ being constant matrices.

Without introducing restrictions, it is supposed that
matrix A(t) respects the following series expanson :

At)= Y Ae™®,  aOR}, (12)
kN
and smilarly for matrices B(t) and C(t), but using
matrices B, and C, where A OR%*! B, OR%,
Cy OR¥, OkON

Such a system can be represented by a TV ST, H(s, t), of
the form (Garcig, 2001) :

H(st)= ZHk(s)e_ko’t ) (13)
kOZ

Theorem 2 (Garcia, 2001)
Transmittances Hy(s) of relation (13) are given by :
H=eN-A)tB if (N-A)lexis, (14)

in which vectors H and B, and matrix A are
respectively given by :

HT =[Ho(s) Ha(s)Hals) - ] (15)
BT:lBOT B’ B, ] (16)
Ay
PRI 17)
oAk |

A

Matrix € is defined as matrix A using C,, and
N =blkdiag((s+ jkan)lq) where 1, denotes the identity

matrix of dimension g.
O

2.3. Time varying systems with polynomial coefficients

Let a system characterized by differential equation :

0 dy(t) _m d®ult
kZ::oak (t)dt—k = kZ::obk (t)Tk() ) (18)

where u(t) 0 R, y(t) O R, and where coefficients ay(t)
and by(t) arereal-valued functions::

q r
at)=Yagt" ad bft)=Ybyt'. (19
=0 1=0

An expression of the TVST H(s, t) of system (18) is
given in (Rudnitskii, 1960).



3. TIME VARYING Z-TRANSFORM

If h(n, K) denotes the response at time nTe (Te being the
sampling period) of a discrete time-varying system
whose input is a Delta Kronecker function &y, (dw = 1 if
n =k, & = 0if n# k) then by analogy to the gationary
case, the TVZT of this system can be defined by (dury,
1964) :

H(n,z) = Z[h(n.k)| = i h(n,n-r)z"

r=0

zOC, (20)

or, using k = n - r (assuming no input before time
kTe: O) .

H(n,z)= Zn:h(n,k)z_”+k :z_”zn:h(n,k)zk. (21)
k=0

k=—0c0

Using this representation, the output of the system at
timenTg, y(n), isrelated to itsinput by (Jury, 1964) :

(n):zinj}[H(n,Z)U(Z)Zn_le. (22)

where U(2) denotes the z-transform of theinput, and /" is
a closed path in the zplane which encircles the
singularities of integral (22) counterclockwise.

3.1. Time varying systems with periodic coefficients

We consider a discrete periodic system characterized
by the state space description :

x(n+1) = A(n)x(n)+ B'(n)u(n)
{y(n) =c'(n)x(n) , (23)

where u(n) O R, y(n) O R, x(n) O R* and where
coefficients A'(n), B'(n) and C'(n) are rea-vaued
matrices of appropriate dimensions.
Matrices A'(n), B'(n) and C'(n) are aso periodic
functions of variable n, namely :
An)=AM+T),  B()=BM+T),
(24)
C'(n):C'(n+T'),
where period T = MT,, M O N, represents the smallest
value satisfying relation (24) and where T, denotes the
sampling period. These matrices are respectively
dements of 1o,1], 1”¥o,1'] and 1¥"[o,T]. Matrix

A'(n) thus admits the following Fourier series
expansion (Garcia, 2001):

An)=Y Ace M (25)

Similar series expansions are also possible for matrices
B’ (n) and C'(n), but using matrices B’y and C'.

As demonstrated by Jury, system (23) can be
represented by a TVZT, H(n, 2, of the form (Jury,
1964) :

.2

M -1 ikn
Hinz)= Y Hy(ze M . (26)
k=0
Theorem 3 (Sabatier and Garcia, 2000)
Transmittances H' (2) of relation (26) are given by :

H=eN-A)B  if (v -A)7T exist, (27)
in which vectors H’ and B’, and matrices A’ are

respectively given by :

5T =] Ho(2) Hi2) .. Hwal2)], (28)
BT = [ By By By ] , (29)
[ Ay Ay Am—z o A A ]
Aq Ag Ay - As Ay
A A PO ) )
A=l P 2 o , .(30)
. . . - AM_l AM_Z
Av-2 Au-z Am-4 = Ao Aua
|AM-1 Am-—2 Am-z - A Ao
Matrix €' is defined as matrix A’ using C'y, and

N' =blkdiage*27™ 1), kDo, M -1, where I,

denotes the identity matrix of dimension .
O

4. ANALYSISOF TIME VARYING SYSTEMS
USING TVST AND TVZT

4.1. Continuous time systems

Using the definitions given by reations (1) and (2), al
the following properties can be demonstrated (Garcia,
2001). They are extensons to time varying systems of
well known properties for stationary systems.

Frequency displacement

S[ea(“f ) h(t,{)I:

Time displacement
observation instant t

8lh{t-a¢)|=e®

Time displacement : displacement in relation to impulse
instant &

H(s-at) (31)

displacement in relation to

H(st-a) (32

8h(t,é +a)| ==

) e

Complex differentiation

H(st) (33)
Scaling

dXH (st)

Sl-nk-a)Knt
% e-0nea)= o

(35)




Complex integration
+00
8n(t.&)/(t-¢)]= [H(st)ds (36)
S
Real differentiation in relation to observation instant t

8[—0'“5;’ 4 } =sH(s)+ ALHS UL [Hd(ts’t)] (37)

Real differentiation in relation to impulse instant &

%dhﬁﬁl( P Hst) Sger O

ek 20 dé' =t
(38)
Integration
h(t,&) d¢
Sﬂimmwﬂzj L‘lH@ﬂ (39)
Real integration
t
Stmzm4=Hfﬂ (40)
I3

Initial val uetheoren[1

Let h(t, & be the impulse response, and H(s, t) the
TVST of atime varying syssem JH. Also, let g(t, ) be
the impulse response of a system G such that :

ot =400 @)

Using differentiation property (relation (38)), the TVST
of system G isgiven by :

G(st)=sH(s,t)-h(t.t) . (42)
The limit of G(s, t) as s tends towards infinity is by
definition :

lim G(s,t) = lim J' (t.t-7)e S7dr. (43)
S S0

0
It can be demonstrated if O M O R* such tha
J.OM|g(t,t—T)|dr<oo and |g(t,t—r)|<oo (Garcia, 2001),

that relation (43) is egual to zero, thus using relation
(42),

lim G(s,t) = lim (sH(s,t)-h(t,t). (44)
Thus, from relation (43) and (44) :
lim (sH(st) =h(t,t). (45)

Now, let y(t) be the response of system 3 to the
input u(t) applied at time t = & then by definition
(relation (2)) :

1 C+joo
y(t):T J'H(s,t)U(s)eS[ds, (46)

Cc—joo

or

y(t)= zi Hs t)V(s)est =), (47)

where U(s) =3¢ v(s) . Given relation (47), y(t) can be
considered as the response of a time varying system of
TVST H(s, t)V(s) to impulse Jt-¢). Thus using relation
(45), the limit of y(t) ast tendstowards isgiven by :

lim y(t) = lim sH(s,&)V(S), (48)
taf S—
or:
Im} y(t) = lim sH(s,&)e% U(s) . (49)
S

Relation (49) thus leads to the following theorem.

Theorem 4 — Initial value theorem

Let h(t, & be the impulse response and H(s, t) the TVST
of atime varying system (. Let y(t) be the response of
system H to an input u(t) applied at instant & Thus, if
the TVSTs of both h(t, & and of dn(t,£)/dé exist, and if

lim sH(s,&)e*¥ U(s) exist, then the initial value of y(t)

S0
is:
Im} y(t) = lim sH(s,)e% U(s) , (50)

S

U(s) being the Lapal ce transform of u(t).

Final value Theorem

Thelimit of G(s, t), TVST of g(t, &) given by relation
(41), asstendstowardsOis:

lim G(st)= lim J.dht—tr)e_srdr, (51)

s-0 s-0 0

or after computation of the right side of relation (51) if
all the poles of G(s, t) have anegative real part ,

Iin})G(s,t): lim hit,t-7)-htt-7) _,,  (52)
or using relation (42),
lim G(s,t) = lim (sH(s,t))-h(t,t). (53)

s-0 s-0
Thus, from relation (52) and (53) :
lim (sH(s,t))— I|m h(tt r)— I|m h{t.&). (54)
s-0

usingt-7=_¢

Now let y(t) be the response of system HH (defined in
section 4.2) to input u(t) applied at timet = & Then by
definition (relation (2)), y(t) can be seen as the response
of atime varying system of TV ST H(s, t)U(s) to impulse
At). Thus, using relation (54) the limit of y(t), ast tends
towards infinity, is:

lim y(t)= lim lim sH(st)U(s). (55)

— 400 t-+00 S



Relation (55) leadsto the following theorem.

Theorem 5 — Final value theorem

Let h(t, & be the impulse response and H(s, t) the TVST
of atime varying system J{. Let y(t) be the response of

system JH to an input u(t) applied a time & Thus, if the
TVST of both h(t, § and of dn(t,é)/dé exigt, and if

lim lim (s)H(st)U (s) exist, then theinitial value of y(t)
tows-0
is:

lim y(t) = lim IimosH(s,t)U(s) , (56)

too L 00S,

U(s) being the Laplace transform of u(t).

4.2. Discrete time systems

As in the continuous case, using the definitions given by
relations (21) and (22) the following properties can be
demonstrated (Garcia, 2001).

Complex displacement
Z[e_a(n_k)Te h(n,k)]: H (n,zeaTe) (57)

Time displacement displacement in relation to

observation ingant n
Z[h(n-ak)|=z2H(n-a,2) (58)

Time displacement : displacement in relation to impulse
instant k

Z[h(n,k +a)]=z"2 H(n,2) (59)
Scaling
Z[h(an,ak)] = H (an,zll a) (60)

Complex differentiation

Z{nﬁl(k -n —i)h(n,k)} =zm d"(nz) (61)

=0 dz"
Differentiation in relation to observation instant n

Z[i h(n, k)} = di H(n,z)+InzH(n,2) (62)

dn n

Differentiation in relation to impulse instant k
Z[i h(n, k)} =-InzH(n,z) (63)

Initial value theorem

Let h(n, k) be the response, at time nT, of atime varying
system H, to the Delta Kroneker function dy. TVZT
H(n, 2) of HH isby definition (relation (20)) :

+00 Foo
H(n2) =Y h(nn-r)z" =h(n,n)+ Y h(nn-r)z™" .(64)
r=0 r=1

Thelimit of H(n, 2), as ztends towards infinity, isthus:

lim H(n,z) = lim h(n,n)++zoih(n,n—r)Z_Ir , (65)

Z -0 r=1

or smply :
lim H(n,z)=h(n,n). (66)

Z -

Thus, if the Delta Kroneker function is applied at time
KoTe, ko O N, theinitial value of system H isgiven by :

Iin; h(n,ky) = h(kg.kg) = lim H(kgy,z). (67)
n-Kop Z-o00

Now let y(n) be the response at time nT, of system H to
theinput u’(t) defined by :

u(t)= iu(k)é(t—kTe), ko ON. (68)
k=kg

y(n) is from definition (relation (22)) :
y(n)= i_J.H(n,z)U(z)z”_ldz, (69)
27 -

or
V) =—= [H(n2V(2)de2 2, (70)
27 e

where

V(z):iu(k+k0)z_k:zk°U(z), (71)
k=0

Given relation (71), y(n) can be considered as the
response of a time varying system of TVZT H(n, 2V(2)
to the Delta Kroneker function Jyo. Thus, using relation
(45) the limit of y(n), as n tends towards ko, is:

lim y(n) = limH(ky,z)V(z) = lim H(ko,z)zko U(z).

n- kg Z- Zo50

(72)

Relation (72) thus leads to the following theorem.

Theorem 6 — Initial value theorem

Let H(n, 2) be the TVZT of a time varying system H
whose response at time nT. to the Delta Kroneker
function &y is h(n, k). System J is supplied by the input
signal whose z transform is U(2) given by relation (68).
If it exigs, the initial value of the output of 3 is thus
given by

lim y(n) = lim H(ky,z) Z9U(z). (73)
n- kg Z- 0
0
Final value Theorem

Let h(n, k) be the impulse response, and H(n, 2) the
TVZT of atime varying system 3. Also, let
g(n, k) = h(n, k) —h(n, k+1) (74)

be the impulse response of a time varying system G. By
definition (relaion (20)), the TVZT G(n, 2) of system §
isgiven by :



G(n,z) = Zn:[h(n,k)—h(n,k +1)] 7™k (75)

k=—0c0
Thelimit of G(n, 2) asztendstowards 1, isthus:
n
lim G(n,2) = k;«[h(n,k) ~h(nk+1)] , (76)
or after simplification :
lim G(n,z) = lim h(n,n—-i)—h(n,n+1) . (77)
z-1 [
The impulse response h(n, k) being equal to 0 if n< k,
relation (77) becomes :
lim G(n,z) = I|m h(n,n-i), (78)

z-1 [

Given relation (74) and using time displacement
property (relation (58)), TVZT G(n, 2) is:

G(n,z)=H(n,z)-zH(n,z) :ZT_lH(n,z) . (79
Thus, using relations (78) and (79), the final value of the
impulseresponse h(n, k) is:
lim h(n,k) = lim lim (z-1)H(n,2) . (80)

n-oo nNoo z-1
Now, if y(n) denotes the response a time nT, of system
H to the input u*(t) given by relation (68), y(n) is given
by :
y(m = Y h(nk)u(k), (81)

kzko

and thefina value of y(n) is:

+o00

lim y(n)= Y | lim h(nk) |u(k). (82)

n - +oo K= kO n - +oo

Using relation (80), relation (82) becomes :

+o00

lim y(n)= Y | lim Ilm(z HH (N, 2) |uk), (83)

n - +oo K= kO no+oz-1

or:

lim y(n) = I|m Iim (z=DH(n,2)

n - +oo

fu(k)z‘kl ., (84)

k=k0

or given the definition of U(2) (relation (71)) :
lim y(n) =lim lim (z DH(n,2)U(2). (85)

n - +oo z-1n- +

Relation (85) thus leads to the following theorem.
Theorem 7 — Final value theorem

Let H(n, 2) be the TVZT of a time varying system H
whose response at time nT. to the Delta Kroneker
function d ish(n, k). System I is supplied by the input
signal whose z transform is U(2). The final value of the
output of 3 isthus given by

lim y(n) = Iiml lim (z-)H(n,2U(2), (86)

if lim y(n) and lim h(n,k) Ok ON exist.

n - +oo n—- o

6. CONCLUSION

In this paper, time varying stransform (or systems
functions) and time varying z-transforms, respectively
introduced by Zadeh (Zadeh, 1961) and Jury (Jury,
1964), have been used to extend to continuous and
discrete time varying systems, several properties and
theorems such as:

- time displacement properties,
- frequency displacement properties,
- scaling properties
- complex and real differentiation properties
- complex and real integration properties
- initia value theorems
- final value theorems.

Computation procedures for time varying s-transform
and for time varying z-transforms have also been given
for continuous time varying systems with :

- periodic coefficients,
- asymptotically constant coefficients,
- polynomial coefficients,

and for discrete time varying systems with periodic
coefficients.

Thus, these results, along with previous results on robust
control of periodic systems (Sabatier et a., 1998),
(Sabatier and Garcia, 2000), show the efficiency of time
varying stransform, to which time varying frequency
responses can be associated, and of time varying z-
transforms for the analysis and control of time varying
systems.
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