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Abstract: A simple neuro-controlle r for a synchronous generator is presented in this paper.
The controller performs the function of the terminal voltage control. By representing the
proposed neuro-controller in s-domain, its parameters to ensure system stability can be
obtained analytically. Results of simulation studies on a non-linear seventh order generator
model with the neuro-controller using calculated parameters are given. Real-time
implementation and experimental verification of the neuro-controller as an automatic voltage
regulator for a physical model of a single-machine infinite-bus power system is described.
Results of experimental studies demonstrate the effectiveness of this simple neuro-controller.
Copyright   2002 IFAC
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1. INTRODUCTION

The artificial neural network (ANN) technology has
matured enough to be applied successfully in many
control fields. However, its success will eventually
depend on its ability to remove a major obstacle, i.e. the
lake of a firm theory. There is no general theory available
to assist the developer to design neural networks (El-
Sharkawi and Niebur, 1996). Because of the absence of a
model, there is no complete theoretical basis to relate the
ANN parameters to the characteristic of a system being
controlled.

As a first step towards a solution for many problems that
face practical applications of neural network in control
field, an s-domain model of a simple neuro-controller is
developed in this paper. Using this model, stability
analysis of the proposed neuro-controller is presented.

Training of the proposed neuro-controller is on-line by
the back propagation (BP) algorithm using a modified
error function. By representing the neuro-controller
learning equations in the s-domain, the controller
parameters can be determined analytically. Using the
calculated parameters, applications of the neuro-
controller as a field excitation controller for a
synchronous generator are illustrated by simulation
studies and experimental verifications.

2. NEURO-CONTROLLER STRUCTURE

The overall control system with the proposed neuro-
controller consisting of one neuron is shown in Fig.1.

The neuro-controller uses a linear hard limit activation
function and a modified error feedback function.

2.1 Training Process

The neuro-controller uses a simple procedure to update
its weight on-line. There is no need for any off-line
training. There is no need for parameter identification or
reference model. The neuro-controller is trained directly,
in an on-line mode, from the system output and there is
no need to determine the states of the system. The neuro-
controller uses the sampled values of the system output to
compute the error using the modified error function. This
error is back propagated through the single neuron to
update its weight. Then the output of the neuro-controller
is computed which is equal to the neuron weight.

The neuro-controller output can be derived as:

)()( tWtu =                 (1)

)(*)1()( tWCTtWtW η+−=   (2)

WCT is the neuron weight correction term based on the
modified error function. W (t), u(t), η  are neuron

weight, neuron output and the learning rate respectively.

3. MODEL IN s-DOMAIN

Based on equations (1) and (2), the neuro-controller
model in s-domain can be derived as presented in the
appendix. The derived model is shown in Fig. 2.
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4. APPLICATION TO A SINGLE-MACHINE
INFINITE-BUS POWER SYSTEM

4.1 Simplified Linear Model
 

First a simplified linear model of a synchronous machine
is used. This model, as shown in Fig. 3, describes the
relation between the generator field voltage and terminal
voltage in open loop (DeMello and Concordia, 1969).
The neuro-controller as an automatic voltage regulator
(AVR) with the simplified machine model is shown in
Fig. 4.

The proposed modified feedback function in this case is:

f(s) = 1 + kvs                (3)

The closed loop transfer function is:
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This equation represents a second order system.
Assuming that kv = 0 (unity feedback), the system
response to a 0.03pu step change in reference input for
two values of 1η is shown in Fig. 5 ( 1η =2 and 1η =10).

As shown in Fig. 5, the overall system behaves as a
stable second order system. But as 1η increases, the

system is more oscillatory. This is an expected result
even for a complicated structure neural network (Salem,
et al, 2000a).

As mentioned in (Salem, et al, 2000b), while using this
function (kv = 0) by the BP algorithm to train a neuro-
controller on-line, the controller has no information about
the system output movement towards its target value.

To improve the performance of a neuro-controller which
is trained on-line by the BP algorithm, a modified
function was introduced in (Salem, et al, 2000a). The
effect of the modified function on the neuro-controller
performance based on analytical studies is described
below.

Fig.1 Overall control system with simple neuro-controller

Fig. 2 Neuro-controller model in s-domain

Fig. 3 Simplified linear model of machine on open circuit
 

Fig. 4 Neuro-controller as an AVR
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Fig. 5  Neuro -controller performance using unity
feedback function

Assuming that the neuro-controller uses the proposed
feedback function f(s), equation (3), in its training, a
critically damped response to a step change in reference
input can be obtained for (Ogata, 1990):
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For 1η = 500, do
'T = 5.67, then kv = 0.21 for a critically

damped response. This critically damped response is
shown in Fig. 6 for a 0.03pu step change in reference
input. Also, other values for 1η  and kv for a critically

damped response can be obtained. These values are: 
1η  = 100 , kv= 0.47, 1η  = 10, kv=1.4



The system response corresponding to these values is
also shown in Fig. 6. It is clear from this figure that as

1η increases the response is better. So, the proposed

values for 1η  and kv are: 1η  = 500, kv= 0.21.

It is well known that the simplified linear model of the
synchronous generator is different from no-load to load
condition. The block diagram shown in Fig. 7 can
approximately represent this simplified linear model
under load condition (Anderson and Fouad, 1977). Using
approximate values for k3 and k6 (k3=0.3, k6=0.5
(Anderson and Fouad, 1977)), system response to a
0.03pu step change in reference input is shown in Fig.8. .
In this case the neuro- controller uses the proposed values
for 1η  and kv.

It can be seen that even though the response in this case
is slightly under damped, it is still close to the critically
damped response as shown in Fig. 8. Then it may be
concluded that the neuro controller performance is almost
the same in the two cases, which is an expected result for
an adaptive controller. Considering that the neuro-
controller is an adaptive controller, one can depend on its
parameters ( 1η and kv) obtained based on a simplified

linear model to use them in a highly non-linear model.
Application of this neuro-controller with its proposed
parameters ( 1η =500, kv=0.21) to control a synchronous

generator represented by a non-linear model is presented
in the following studies.

4.2 Synchronous Generator Non-Linear Model

A nonlinear seventh-order model is used to simulate the
dynamic behavior of the generating unit connected to a
constant voltage bus through two parallel transmission
lines (Shamsollahi and Malik, 1997).
A computer program is used to simulate in time domain
the generator non-linear model with the neuro-controller
represented by the s-domain model. The time step in this
program is 1ms.
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Fig. 6 Neuro-controller performance using modified error
function

With the generating unit operating at 0.7pu power and
0.85 power factor lag, a study was conducted to show
how the modified function parameters affect the system
performance.

In case of kv = 0, the system response to a 0.03pu step
change in reference voltage is shown in Fig. 9 for
different values of 1η .

As it is clear from this figure, this controller is not
suitable to control the generator terminal voltage.

In case of kv = 0.21, system response to a 0.03pu step
increase in reference voltage at 1s followed by a 0.1pu
step increase in reference torque at 5s is shown in Fig. 10
for different values of 1η .

It is seen from Fig. 10(a) that the terminal voltage
response is excellent and it is less sensitive to the
variations of 1η . It also demonstrates that the parameters

obtained based on a simplified linear model can be used
for the non-linear model as well.

Fig. 7 Machine simplified linear model on load
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Fig. 8 Neuro-controller performance under load and no
load conditions
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Fig. 9  Neuro -controller performance using unity
feedback function



With the function f(s) = 1+kvs, the neuro-controller is
designed to control the generator terminal voltage only. It
can be seen from Fig. 10(b) that the system still needs a
supplementary signal to enhance stability. As proposed in
(Salem, et al, 2000b), including an additional term in f(s)
based on the generator speed deviation can enhance
system stability.  

5. REAL-TIME IMPLEMENTATIONS

5.1 Power System Physical Model

Schematic diagram of the physical model of a single-
machine infinite-bus power system available in the
Power System Research Laboratory at the University of
Calgary is shown in Fig. 11. It consists of a 3-phase
3kVA, 220V synchronous micro-alternator driven by a
220V, 30A dc motor. The generator is connected to a
constant voltage bus through two parallel transmission
lines. The lumped element physical model of the
transmission line simulates the performance of a 500kV,
300km long double circuit transmission line, which
consists of six Π  sections. A system of 3 three-phase
Circuit Breakers controlled by a ROM based logic circuit
is used. Of the three sets of breakers, two sets are used at
the ends of the transmission line and the third is used to
apply a three-phase to ground short circuit at any
distance. The contact open and close timings can be
programmed.
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(a) Terminal voltage response
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(b) Power angle response

Fig. 10 Neuro-controller performance as an AVR

 
A Time Constant Regulator (TCR) is used to change the
effective field time constant of the generator in order to
emulate a large generating unit. Three phase ac voltages
at the generator terminals are stepped down, rectified and
filtered with a cut-off frequency of 8Hz to obtain the dc
terminal voltage (Vt) feedback signal. The neuro-
controller is implemented on a DSP board based on the
TMS320C30 DSP chip. The terminal voltage (Vt ) signal
is used in the error function to train the neuro-controller
on-line and compute the required field control signal,
which is fed to the TCR.

5.2 Hardware Implementation

The neuro-controller is developed on a DSP board
supplied by SPECTRUM Signal Processing Inc. It
contains a Texas Instruments TMS320C30 DSP chip.
The chip is a 32-bit floating-point device with a speed of
16.7 million instructions per second. Its performance is
further enhanced through its large on-chip memories,
concurrent DMA controller, two external interface ports.
Two 200kHz, 16-bit analog I/O channels on board,
coupled with direct access to all serial and parallel I/O
channels of DSP chip, provide the exterior input-output
functions. The 32-bit on-chip timer is programmed by
software to a resolution of 120 ns. The board is mounted
inside a PC, which is equipped with corresponding
development and debugging tools.

The terminal voltage Vt feedback signal is fed to DSP
board through the A/D channel. This input signal goes
through a filter, which limits the noise and provides anti-
aliasing protection. The filtered signal is then stored in a
buffer. The DSP chip reads the buffer and computes the
control signal Vc. The computed Vc is fed to the D/A
channel that filters the signal for smoothing before
sending it out. The output signal goes through an
amplifier circuit to provide the required field control
signal to the TCR.

5.3 Software Implementation

The software consists of two modules, the PC module
and the DSP module. The PC module is a C program
running on an 80386 microcomputer. The main function
of the PC module is to down load the DSP program into
the DSP board, initialize the communication between the
PC and DSP programs, and store DSP input/output data
in a file for further analysis. The DSP module is a C
program running on the DSP board. This program
contains a main function and an interrupt routine. Using
software initial value for the reference voltage, the
feedback of the terminal voltage and the controller
output, the main function trains the neuro-controller for a
number of iterations to obtain a stable initial value for the
controller output.



Fig. 11 System model

to 1ms (the sampling period). It then enables the interrupt
flag to make the DSP ready to receive the timer interrupt
signal. The timer produces repetitive interrupt signals
according to the count in its register. This interrupt signal
serves in two ways. First, it initiates A/D and D/A
conversion, and second, it directs the DSP to execute the
interrupt routine.

The interrupt routine reads Vt through the A/D and
calculates the error function, updates the neuro-controller
weight, and calculates the control output signal Vc. This
signal goes through an amplifier to the TCR.

 
5.4 Experimental Results

The performance of the neuro-AVR (NAVR) was
investigated by a number of experimental tests for a
variety of operating conditions and disturbances. Results
of a representative set of these tests are presented in the
following sections. In these tests, the sampling rate is
1ms with a learning rate ( ç1 ) of 500. Performance of the
neuro-controller has been compared with a commercial
AVR. This commercial AVR is implemented on a
Programmable Logic Controller (PLC) to control the
terminal voltage of the generating unit. It is programmed
using a function block programming language called
FUPLA. Three phase voltages and currents at the
generator terminals are stepped down to form six input
signals to the AVR. The PLC-based AVR computes the
required field control signal which is fed to the TCR.

5.5 Voltage Reference Step Change

With the generating unit operating at 0.34 pu power, 0.9
pf lead and terminal voltage of 1.04 pu, a 0.05 step increase
in voltage reference is applied at 10s. At time 20s, the
change in input reference voltage is removed and the
system returns to its original operating condition. As
shown in Fig. 12, the system response with the NAVR,
which is trained on-line, is very good. Also, the NAVR has
small effect on the active power while changing the
terminal voltage. It is also clear from this figure that the
NAVR control signal is stable and changes smoothly with
a dramatic effect on the system performance.  To show the

performance clearly for better comparison, the NAVR and
commercial AVR plots are intentionally off-set in time.  

To further test the performance of the NAVR, the operating
condition is changed to 0.7pu power, 0.94 power factor lag
and 1.07pu terminal voltage. The same disturbance of
0.05pu step change in input reference voltage is applied
with the same timing. System responses to this disturbance
with NAVR and the commercial AVR are shown in Fig.
13.   Although the operating condition is much different,
the NAVR still provides very good performance for the
generator terminal voltage.  

5.6 Three-Phase Short Circuit Test

With the system operating at 0.8pu power and a 0.9 power
factor lag, a transient test was conducted to test the
performance of the NAVR in response to a disturbance. In
this test a three-phase to ground short circuit was applied at
one third of one transmission line, and the fault was cleared
100ms later by disconnecting the line. The disconnected
line is successfully reconnected after 1s. The same
disturbance was applied after 10s in case of NAVR. It can
be seen from Fig. 14 that the NAVR can retain the system
stability and keep the system operating at a stable
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Fig. 12   System response to 0.05pu step disturbance in

voltage reference, P=0.34, pf=0.9 lead.
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Fig. 13 System response to 0.05pu step disturbance in
voltage reference, P=0.7, pf=0.94 lag.
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Fig. 14 System response to a three-phase to ground fault
P=0.8pu, pf=0.93 lag.

6. CONCLUSIONS

A neuro-controller with a simple structure for a
synchronous generator is presented in this paper. The
neuro-controller is trained on-line based on a modified
function. The neuro-controller consists of one neuron,
one weight, hard limit activation function, and a constant
input. Based on this simple structure, the neuro-controller
is represented in s-domain. Having the neuro-controller
in s-domain, its stability analysis with a simplified
generator linear model is presented. The neuro-controller
parameters are obtained analytically to ensure system
stability. The neuro-controller parameters, which are
calculated based on a simplified linear model, can be
used for a non-linear model. The neuro-controller is used
to function as an AVR for a single-machine infinite-bus
power system. Results show that the neuro-controller acts
as an adaptive controller. The neuro-controller is
implemented in a real-time digital control environment.
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8. APPENDIX

Based on eqns. (1) and (2), the neuro-controller model in
s-domain can be obtained. In time domain, (2) can be
written as:

)(*)()( tWCTttWtW η=∆−−      (6)

Dividing (6) by t∆ :

)(
)()(

terror
tt

ttWtW

∆
=

∆
∆−− η

      (7)

Using the differential form, (7) can be written as:

)(*
)(

1 tWCT
dt

tdW
η=           (8)

where    
t∆

=
η

η1      

Representing (8) in s-domain:
)(*)( 1 sWCTssW η=               (9)

From (1) and (9):

s
sWCT

sU
)(*

)( 1η=              (10)

Equation (10) can be represented as shown in Fig. 16

The general form of the weight correction term is:
)()()()( sfsCsRsWCT −=               (11)

R(s): reference input C(s):system output
f(s) : feedback function

Complete model of the proposed neuro-controller in s-
domain is shown in Fig. 2, where G(s) represents the
controlled system.


