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Abstract: Volterra series expansions represent an important model for the representation,
analysis and synthesis of nonlinear dynamical systems. However, a significant problem with
this approach to system identification is that the number of terms required to be estimated
grows exponentially with the order of the expansion. In practice, therefore, the Volterra series
is typically truncated to consist of, at most, second degree terms only. In this paper it is
shown how the ideas of reproducing kernel Hilbert spaces (RKHS) can be applied to provide
a practicable solution to the problem of estimating Volterra series. The approach is based
on solving for the Volterra series in a linearised feature space (corresponding to the Volterra
series) which leads to a more parsimonious estimation problem.
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1. INTRODUCTION

Volterra series expansions represent an important
model for the representation, analysis and synthe-
sis of nonlinear dynamical systems. The idea of the
Volterra series expansion is to form a model for the
output of the system as a polynomial in the delayed
inputs (Priestley, 1988). Such a model has been shown
to provide a good representation for a wide class of
nonlinear systems (Boyd and Chua, 1985). It is par-
ticularly attractive given that the unknown parameters
enter linearly and therefore in the minimum mean
square error case the parameters can, at least in princi-
ple, be determined exactly (Koh and Powers, 1985).
However, the number of terms increases exponen-
tially with the order of the expansion. Therefore, in
practical terms it is usually necessary to use severely
truncated series or employ particular reduced order
structures (Ling and Rivera, 1998).

We explain how the ideas of reproducing kernel
Hilbert spaces (RKHS) (Aronszajin, 1950; Wahba,
1990) can be applied to provide a more practicable
solution to the estimation of Volterra kernels. In par-
ticular we are interested in the case of Volterra series

of orders higher than two. It is these models which
present significant difficulty when attempting to esti-
mate the Volterra kernels.

The main idea behind the approach is to use a
particular reproducing, or Mercer, kernel to sum-
marise the complete Volterra series. This is achieved
using a mapping into a feature space which is a
RKHS (Vapnik, 1995). This feature space corresponds
to the space formed by the Volterra series. However,
it is not necessary to use the Volterra series terms
themselves and instead we use inner products between
the terms. This leads to a considerable simplification
of the estimation problem. It is this alternative, com-
putable approach to Volterra series estimation which
is the novel contribution of this paper.

In the next section we introduce the discrete Volterra
series for representing nonlinear discrete-time input-
output models. The problems with this approach are
discussed as motivation for the new approach. In Sec-
tion 3 a RKHS corresponding to the Volterra series
is constructed. The problem and solution of approx-
imation in RKHS is described and a simple form of
the Volterra kernel are described in Sections 4 and 5.
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Finally, an example of the new approach to Volterra
series estimation is described.

2. VOLTERRA SERIES EXPANSIONS

Consider now the nonlinear model consisting of ob-
servable input and output processes u � t ��� u � t � 1 ���	�	�
�
and y � t ��� y � t � 1 ���	�	�	� respectively. A general (non-
anticipative) model for y � t � takes the form

y � t ��� f � u � t ��� u � t � 1 ���	�	�	�
��� (1)

Suppose that f is sufficiently well behaved so that we
can expand it in a Taylor series about some fixed point
to give (Priestley, 1988)

y � t ��� h0 � ∞

∑
m1 � 0

h1 � m1 � u � t � m1 �� ∞

∑
m1 � 0

∞

∑
m2 � 0

h2 � m1 � m2 � u � t � m1 � u � t � m2 ����	�	� (2)

where the Volterra kernels (coefficients 1 ) are for-
mally given by

h0 � f � ū ��� h1 � mi ��� � ∂ f
∂u � t � mi ��� ū

�
h2 � mi � m j ��� � ∂2 f

∂u � t � mi � ∂u � t � m j ��� ū

�
�	�	�
with ū the fixed point about which the expansion is
taken. It is normally assumed that the coefficients
hk � m1 � m2 �
�	�	��� mk � are symmetric with respect to per-
mutations of m1 � m2 �
�	�	��� mk. Such a model has been
shown to provide a good representation for a wide
class of nonlinear systems (Boyd and Chua, 1985).

We can form the truncated version of Eq. 2 giving the
Volterra model of degree, L, and memory length, M,
thus

y � t ��� h0 � L

∑
n � 1 � M � 1

∑
m1 � 0

M � 1

∑
m2 � 0

�	�	� M � 1

∑
mn � 0

hn � m1 � m2 ��	�	��� mn � n

∏
i � 1

u � t � m j ��� (3)

This model consists of multidimensional convolutions
between the Volterra coefficients and the input terms.
The output is linear with respect to the coefficients
and, therefore, under the assumption of stationarity, if
we solve for the coefficients with respect to a min-
imum mean square error criterion this will have a
single global minimum. The coefficients can then, in
principle, be found using the calculus of variations
or orthogonal projections (Koh and Powers, 1985).
However, the computational complexity is found to

1 We will use coefficients in the remainder to differentiate
these from the reproducing kernels which will be introduced
subsequently.

increase exponentially with the order of the model. For
example with M � 10 � L � 10, taking account of the
symmetry in the coefficients, we are still required to
estimate approximately 184 � 756parameters. Notwith-
standing the computational burden, to have confidence
in the estimates large quantities of data would be re-
quired.

To limit the number of parameters the model is of-
ten truncated to 2nd or 3rd degree. However, the
number of parameters can still pose a problem and
2nd order models only describe the system nonlin-
earity in a very limited operating range. To include
higher degree nonlinearity without introducing too
many model parameters it is therefore necessary to
seek parsiminious, reduced-order alternatives by im-
posing additional structure. Examples include cascade
structures composed of linear filters in series with
memoryless nonlinearities (Korenberg, 1991) or lin-
ear combinations of tensor products of simple basis
vectors (Nowak and Van Veen, 1996). Both of these
approaches require nonlinear optimisation - of the pa-
rameters in the former and of the structure in the latter.

An alternative is to construct a sparse representa-
tion by searching for the most significant terms (Yao,
1999). Again, however, this is a nonlinear optimisa-
tion problem solved, for example, using genetic algo-
rithms. Efficient frequency domain methods have also
been reported which reduce significantly the number
of computations as compared to the standard time
domain methods (Im and Powers, 1996; Reed and
Hawksford, 2000). These approaches, though, still
scale exponentially with the degree and memory of
the filter. In this paper we take an alternative approach
in which no approximation to the model structure is
necessary but which leads to a significant reduction in
the number of parameters to be estimated.

3. REPRODUCING KERNEL HILBERT SPACE
OF VOLTERRA SERIES

In order to find a simple solution to Volterra series
it will be useful to construct a Hilbert space of func-
tions corresponding to the Volterra series. This Hilbert
space, which will be shown to be a RKHS, will al-
low for a particularly simple solution which is readily
computable.

First we define a variable, x, the components of which
are the delayed input samples, i.e. x1 � u � t ��� x2 �
u � t � 1 ���
�	�	��� xi � u � t � i � 1 ���	�	�	� . We assume that the
maximum delay of interest is M � 1 such that x ��� M.
The Volterra series, Eq. 3, can then be written as

y � t ��� h0 � L

∑
n � 1 � M � 1

∑
m1 � 0

M � 1

∑
m2 � 0

�	�	� M � 1

∑
mn � 0

hn � m1 � m2 ��	�	��� mn � n

∏
i � 1

xi � � (4)



This is equivalent to expanding the input x into a
nonlinear feature space consisting of all possible poly-
nomials in the xi up to, and including, degree L. For
example if we consider the case of L � 2 and M � 2
we have the following feature expansion

φ � x �!� "######$ 1
x1
x2

x1x2

x2
1

x2
2

%	&&&&&&' � (5)

We denote the number of terms in this feature expan-
sion by l �)( L * M + !

L!M! .

The Volterra series is then expressed, using the abuse
of notation y � t �,� y � x �-� y � x � t �.� , in terms of this
feature space as

y � t ��� y � x �!�0/ w � φ � x �.1�� (6)

where the vector w is an appropriate one-to-one map-
ping of the Volterra coefficients hi � � � . The feature
mapping φ � x � : � n 2 H maps low dimensional inputs
into the (typically) high dimensional space H . In the
previous example we see that the mapping is from � 2

to a six dimensional space of features.

We now need to show that this feature space corre-
sponds to a Hilbert space. A Hilbert space is a linear
space, upon which is defined an inner product, and
which is also complete with respect to the metric de-
fined by the inner product (the space is complete if
every Cauchy sequence of points converges such that
the limit is also a point in the space).

We take as the Hilbert space the set of functions of the
form

y � x �3� l

∑
i � 0

wiφi � x � (7)

for any wi �4� and where the upper limit may be
infinite. We define the inner product in the space to
be 5

l

∑
i � 0

viφi � x ��� l

∑
i � 0

wiφi � x ��6
H

� l

∑
i � 0

viwi

λi
(8)

where the λi will be defined shortly but for now can be
considered simply as a sequence of positive numbers.
The associated norm then has the form7

y
7 2

H � l

∑
i � 0

w2
i

λi
� (9)

The linear combination of terms, Eq. 7, together with
the inner product, Eq. 8, is then a Hilbert space, H 2 .

Additionally we define the function

k � x � x 89��� l

∑
i � 0

λiφi � x � φi � x 8:��� (10)

2 The completeness of this space to form a Hilbert space can be
proven (Wahba, 1990).

This function will therefore correspond to a dot prod-
uct in l2 such that

k � x � x 89��� 5 l

∑
i � 0 ; λiφi � x ��� l

∑
i � 0 ; λiφi � x 89� 6

l2

� (11)

The function, k � x � x 8 � , thus defined, has the two impor-
tant properties that:

(1) For a fixed x, k � x � � � belongs to the Hilbert space
H since

k � x � � ��� l

∑
i � 0

�
λiφi � x �<� φi � � � (12)

and, for fixed x, φi � x � are a set of numbers,
therefore defining the new set of weights w 8i �
λiφi � x �

k � x � � ��� l

∑
i � 0

w 8iφi � � � (13)

which is of the general form, Eq. 7.
(2) For every y � H : y � ∑l

i � 1 wiφi we have the
reproducing property/ y � k � x � � �.1 H � l

∑
i � 0

wiw 8i
λi
� l

∑
i � 0

wiλiφi � x �
λi� l

∑
i � 0

wiφi � x �!� y � x � (14)

i.e. point evaluations of y at x are equal to the
inner product of y with k � x � � � .

The function k : X = X 2 � where x � x 8 � X , with these
properties, is known as the reproducing kernel of the
Hilbert space H , which is called a reproducing kernel
Hilbert space (RKHS).

Formally a RKHS is a Hilbert space of functions on
some parameter set X with the property that, for each
x � X , the evaluation functional Lx, which associates
f with f � x � , Lx f 2 f � x � , is a bounded linear func-
tional (Wahba, 1990). The boundedness means that
there exists a scalar M � Mx such that>

Lx f
> � > f � x � >�? M

7
f
7

for all f in the RKHS

where
7 � 7 is the norm in the Hilbert space.

The original definition, given by properties 1 and
2, then follows from this formal definition by the
Riesz representation theorem. The characterisation of
the kernel is encompassed in the Moore-Aronszajin
theorem (Wahba, 1990).

Theorem 3.1. To every RKHS there corresponds a
unique positive-definite function (the reproducing ker-
nel) and conversely given a positive-definite function
k on X = X we can construct a unique RKHS of real-
valued functions on X with k as its reproducing kernel.

Given the kernel, k � x � � � , functions in the RKHS corre-
sponding to the original expansion, Eq. 7, can now be
expressed in terms of the kernel instead as



y � x �3� ∑
i

aik � x � xi � (15)

for ai �@� .A well defined inner product is then (Wahba,
1990)5

∑
i

aik � xi � � ��� ∑
j

b jk � x j � � � 6
F

�
∑
i A j aib j / k � xi � � ��� k � x j � � �B1 F � ∑

i A j aib jk � xi � x j ���
4. ESTIMATION OF THE VOLTERRA SERIES IN

RKHS

In the general theory of Hilbert spaces we consider
functions as points in H and it is therefore not possible
to look at the value of a function at a point. However,
if H is a RKHS then we can express the value of
the function y at the point xi (we use the superscript
notation, xi , to signify different inputs as opposed to
the different components of x which we denote xi) as
the inner product

y � xi �!�C/ y � k � xi � � �B1 H (16)

using the reproducing property of the RKHS. The
significant advantage of RKHS then is that we can
approximate functions using a finite series of point
evaluations (observations). The reproducing property,
Eq. 16, defines a linear sampling operator which we
denote by L, i.e.

zi � Liy (17)

where we use zi to denote the observation of y at the
point xi. The sampling operator is a linear evaluation
functional, defined on H , which associates real num-
bers to the function y.

Suppose we have N such observations at a set of
distinct values of x and denoting the complete set of
observations by zN �0D z1 �	�
�	��� zN E T then

zN � Ly � N

∑
i � 1
� Liy � ei (18)

where ei ��� N is the ith standard basis vector.

The Volterra approximation problem can now be
stated as follows: given the Hilbert space of functions
H , the set of functions

�
k � xi � � �	� Ni � 1 F H and the

observations
�
zi � Ni � 1, find a function y � H such that

Eq. 18 is satisfied.

It can be shown that a solution always exists provided
the k � xi � � � are linearly independent (which is satis-
fied if the xi are distinct) (Bertero et al., 1985), it is
not unique however. A unique solution can be found,
though, which has minimal norm, the so-called normal
solution. Interestingly the computation of this normal
solution is always well-posed in the strict mathemat-
ical sense, i.e. the solution depends continuously on
the data. However, it can be strongly ill-conditioned

and therefore exhibit numerical instability. To avoid
this instability we therefore seek a solution to the
regularisation problem (which leads to a particularly
simple solution): find y � H such that

ŷ � x �G� argmin
y H H

N

∑
i � 1

l � zi � y � xi �.� � ρ
2

7
y
7 2

H (19)

where l � � � � � is a convex loss function and ρ I 0 is the
regularisation parameter.

Substituting Eqs. 7 and 9 we obtain, for a RKHS,

ŷ � x �G� argmin
y H H

N

∑
i � 1

l J zi � l

∑
j � 0

w jφ j � xi �LK � ρ
2

l

∑
j � 0

w2
j

λ j
�

(20)

Minimising this expression with respect to the coeffi-
cients w j and equating to zero we obtain� N

∑
i � 1

l 8MJ zi � l

∑
j � 0

w jφ j � xi � K φ j � xi � � ρ
w j

λ j
� 0 (21)

where l 8 is the derivative of the loss function. Defining
a new set of coefficients

ai � 1
ρ

l 8 � zi � y � xi �.� (22)

then, in terms of these, we have

w j � λ j

N

∑
i � 1

aiφ j � xi ��� (23)

The solution of the variational approximation problem
is therefore given by

ŷ � x ��� l

∑
j � 0

w jφ j � x �G� l

∑
j � 0

λ j

N

∑
i � 1

aiφ j � xi � φ j � x �� N

∑
i � 1

ai

l

∑
j � 0

λ jφ j � xi � φ j � x �!� N

∑
i � 1

aik � x � xi ��� (24)

There are two points of interest: (i) even though we are
considering mappings into very high (possibly infinite
dimensional spaces) the computation remains finite
and directly proportional to the size of the available
data. We are therefore able to solve for Volterra series
with arbitrarily large numbers of terms with a finite
computation. (ii) the form of the solution is inde-
pendent of the loss function l and is always a linear
superposition of the kernel functions.

In the particular case of l � � � � �3�N� � � � � 2 we have the
standard regularised least-squares solution. Substitut-
ing Eq. 24 for the output into Eq. 22

ai � 1
ρ

l 8O� zi � y � xi �.��� 1
ρ
J zi � N

∑
j � 1

a jk � xi � x j � K �
(25)

In matrix form

a � 1
ρ
� zN � Ka � (26)



where K is the kernel (Gram) matrix defined as Ki j �
k � xi � x j � . The coefficients are then given by the solu-
tion of � K � ρI � a � zN � (27)

5. THE VOLTERRA KERNEL

The Volterra reproducing kernel was expressed previ-
ously as the series expansion

k � x � x 8:��� l

∑
i � 0

λiφi � x � φi � x 89� (28)

where the φi � x � correspond to polynomials in x. It
was seen in the previous section that the estimation
of the Volterra filter could be reduced to a problem
which scales with the number of data. However, the
reproducing kernel still involves l terms.

Consider instead the form of the kernel

k � x � x 8:����� 1 � / x � x 891B� L (29)

which corresponds to a mapping into the space
of all possible polynomials of degree

?
L. It is

known that this kernel has an expansion of the form
Eq. 28 (Vapnik, 1995) and can therefore be used in-
stead.

As an example consider the case of L � 2 � M � 2, i.e.
x ��� 2 for which

k � x � x 8 ���P� 1 � / x � x 8 1.� 2 �0� 1 � x1x 81 � x2x 82 � 2� 1 � 2x1x 81 � 2x2x 82 � 2x1x 81x2x 82� � x1x 81 � 2 � � x2x 82 � 2
which is equivalent to considering the feature mappingQ

λiφi � x � given by� ; λiφi � x �<� 6i � 1 �0� 1 � Q 2x1 � Q 2x2 � Q 2x1x2 � x2
1 � x2

2 �
which can be proven by evaluating (in l2)

k � x � x 89���
"#######$ 1Q

2x1Q
2x2Q

2x1x2

x2
1

x2
2

%	&&&&&&&' �
"#######$ 1Q

2x 81Q
2x 82Q

2x 81x 82� x 81 � 2� x 82 � 2
%	&&&&&&&' � (30)

We now see the role of the λi’s, which ensure the
equivalence of the forms, Eqs. 10 and 29.

6. EXAMPLE

As an example of the application of the RKHS
approach to Volterra series estimation consider the
discrete-time nonlinear dynamical system described
by the following equation (Billings and Voon, 1986)

y � t ��� 0 � 5y � t � 1 � � 0 � 3y � t � 1 � u � t � 1 �� 0 � 2u � t � 1 � � 0 � 05y2 � t � 1 � � 0 � 6u2 � t � 1 �
with the observations generated as

z � t ��� y � t � � ε � t � (31)

0 20 40 60 80 100
−0.2
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0.4

0.6
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1
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y(
t)

Fig. 1. Typical predicted output (‘–’) for a Volterra
RKHS model with L � 5 � M � 2 and actual noise
free true output (‘- -’).

where ε � t �GR N � 0 � 0 � 1 � (note that this is a very noisy
signal with a signal-to-noise ratio of approximately
30%). The system includes both delayed inputs and
outputs and therefore we would expect a Volterra
model (based only on delayed inputs) to be of a high
order to provide good predictive performance. In iden-
tifying the system the data were generated from an ini-
tial condition of y � 1 �3� 0 � 1 and the control input was
sampled as u � t �SR N � 0 � 2 � 0 � 1 � . Various models were
considered with varying memory lengths and poly-
nomial degrees as shown in Table 1. In all cases the
quadratic loss function is used for which the solution
is given by Eq. 27. The kernel matrix is constructed
using the kernel defined by Eq. 29 with the appropriate
value of L and xi �TD u � t � i � 1 ���
�	�	��� u � t � M � 1 � E T .

For the models considered, the value of ρ was first
estimated using a set of 500 data samples for training
and 200 independent samples for validation. The value
of ρ was estimated as corresponding to the minimum
of the mean-squared error on this validation set. Given
the estimated value of ρ each model was then trained
and tested for 10 different training and testing data
sets of 500 samples each. The average over these runs
of the mean-squared error is shown in Table 1. An
example prediction over the first 100 samples of one
of the test sets is shown in Figure 1.

The purpose of these results is simply to demonstrate
the applicability of the new technique and not as an
exhaustive investigation of how to find good models.
It can be seen from the results that good prediction
performance is achievable and that large Volterra mod-
els can be estimated. The reason that the model with



Table 1. Comparison of the average mean
squared error for six different example

Volterra RKHS models.

L M ρ Average mse
2 2 0.05 0.0254
5 1 0.1 0.0159
5 2 3.5 0.0045
5 3 3.8 0.0056
5 4 13.0 0.0062
10 10 500.0 0.4214

L � 10 � M � 10 performed so poorly is probably due
to insufficient data and/or overfitting of the model to
the training data. However, we see that the “optimum”
model (L � 5 � M � 2) is considerably better than the
simple L � 2 � M � 2 case. For this “optimum” case the
average mean-squared error of 0.0045 compares very
favourably to the noise variance of 0.01.

Using Eq. 23 it is possible to convert the kernel model
back into the equivalent Volterra series. An example
of this for the case L � 5 � M � 2 is

y � t ��� 0 � 1215 � 0 � 0826u � t � � 0 � 0836u � t � 1 �� 0 � 0002u � t � u � t � 1 � � 0 � 0395u2 � t �� 0 � 2637u2 � t � 1 �U� 0 � 0704u2 � t � u � t � 1 �� 0 � 0124u � t � u2 � t � 1 � � 0 � 0649u3 � t �� 0 � 0256u3 � t � 1 � � 0 � 0988u3 � t � u � t � 1 �� 0 � 0580u2 � t � u2 � t � 1 �M� 0 � 0379u � t � u3 � t � 1 �� 0 � 0156u4 � t �M� 0 � 0553u4 � t � 1 �� 0 � 0270u4 � t � u � t � 1 � � 0 � 0798u3 � t � u2 � t � 1 �� 0 � 0286u2 � t � u3 � t � 1 �M� 0 � 0109u � t � u4 � t � 1 �� 0 � 0097u5 � t �M� 0 � 0485u5 � t � 1 ���
7. CONCLUSIONS

A computationally efficient approach to the estimation
of large scale Volterra series has been presented. The
approach makes use of a Hilbert space corresponding
to the Volterra series which was shown to be a RKHS.
The solution to approximation in the Volterra RKHS
with respect to a large class of loss functions was
shown to be simply a linear combination of a set of
kernel functions. The main reason for using the RKHS
approach is that the number of coefficients which
needs to be estimated is only proportional to the num-
ber of data. This can therefore represent a significant
reduction over the standard Volterra series case (for
which an arbitrarily large number coefficients may be
present). Finally, the approach was demonstrated on a
highly nonlinear benchmark system.
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