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Abstract : In this paper, an on-line segmentation algorithm, developed to preprocess
continuously monitored data in Intensive Care Units, in a purpose of alarm filtering, is
presented. The algorithm splits the signal monitored into linear affine functions of
various lengths and determines on line when a new segment must be calculated. The
delay of detection of a new linear function depends on the importance of the change :
the more important the change, the quicker the detection.

The algorithm provides a good filtering of the data, without distortion, on simulated
data as well as on clinical data recorded on patients admitted in ICU. The information
returned by the algorithm can be used to extract on line information on the signal, like
the trend of the signal, at short or long term. This useful information could be used in

“more intelligent” alarm systems, like knowledge based systems.
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1. INTRODUCTION

In intensive care units, monitoring systems are of
grand interest for the medical staff. They measure
and display on line physiological parameters, that
give an information on the patient’s state. An
important task is to identify an abnormal
physiological state as soon as possible and to warn
the care giving personnel. To do so, monitoring
systems are equipped with alarm systems, which
consist commonly in a limit alarm system. When the
value of the parameter monitored exceeds preset
limits, an alarm is given. Unfortunately, these
systems generate a large number of false alarms that
are actually an extra burden to the care giving
personnel, as reported in the literature (O’ Carrol,
86). A reason for this is that variations can occur on
the signal monitored that do not correspond to a
physiological change but that are due to extraneous
causes (measurement artefacts, patient turning in bed,
cough ...).

On the past decade, some work has been done to
develop intelligent alarm systems for ICU, their goal
being to assist clinicians in the interpretation of an
alarm situation (Coiera 93, Uckun 94) The task of
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reducing the false alarms rate is an important part of
it. Intelligent alarm systems require to extract the
maximum information possible from the data
available from the bed-side monitors: extraction of
the trend in the signal monitored, pattern recognition
on the signal (steady state, level change, slow
increase ...), signal to symbol transformation so as to
perform inferences with the information extracted
from the clinical data (Avent and Charlton 90,
Gordon 86, Imhoff et al 98)

Yet, a significant obstacle for using the monitored
data in intelligent alarm systems is indeed the
difficulty to extract reliable information from these
data. On line recorded physiological parameters
contain artefacts, natural fluctuations and transients
that make the use of such techniques difficult in
practise.

A common way to remove noise from on-line
monitored data are linear filtering methods such as a
low-pass filter or a moving averager. However, these
tend to distort the signal during the transients.
Another common method is the median filter, robust
to artefacts. Yet, a good filtering requires large time
windows that may create a delay that is too long in a
purpose of alarm filtering (Makivirta et al 91).



This paper presents an on line segmentation
algorithm developed to preprocess physiological data
recorded continuously from the bed-side monitors. It
splits the signal into linear segments of various
lengths and returns useful information like the slope
of the segment, its ordinate and its starting point. It
provides a good filtering of the data, without
distortion and is able to detect a quick change in the
data. The information it returns can be used to extract
on line information on the signal, like the trend of the
signal, at short or long term.

In the first paragraph, a description of the algorithm
is made. In the second paragraph, the results obtained
on simulated signals are compared to those obtained
by a moving average and a median filter. The results
obtained on real data coming from different patients
from ICU are analysed in the third paragraph.

2. DESCRIPTION OF THE SEGMENTATION
ALGORITHM

Segmentation is a way to treat signals with quick non
stationarities or sudden breaks and is a first step
towards signal knowledge extraction. It consists in
considering that the signal is composed of a
succession of homogeneous segments of constant
characteristics separated by abrupt transitions where
the signal caracteristics change very quickly.

The segmentation algorithm developed here uses a
segmentation well suited for trend extraction or
pattern detection purposes. It consists in splitting the
monitored data into successive affine linear functions
of the form : y(t)=pi(t-to;)+yoi

where t,; is the time when the linear function begins,
pi is its slope and y,; is the ordinate at time t,;.

The principle of the segmentation algorithm is to
determine on line the moment when the linear
approximation is no longer acceptable and when to
calculate the new linear function that now best fit the
data. The technique used to detect if the linear
approximation is still acceptable is the cumulative
sum (CUSUM) technique. This technique, which
consists in integrating the difference between the
observed value and the current model, is very
sensitive to changes of behaviour in the data. It
makes the algorithm able to react quickly in front of
sudden changes.

More details on the algorithm is given below (the
algorithm is written in appendix):

Let us suppose that, at time t;, the characteristics of a
new linear function has been calculated, that is pj,
yo; and to;.

k sample time later, t;+kAt, the model extrapolation

is j/(tl +kAr) = pl.(t1 + kAt - 1o )+ yo,
and e(r) +kAt) = y(t; + k1) = j/(t] +kAt) is the

difference between the measurement and the
extrapolation.
The cumulative sum of the difference calculated from

time t; is

cusum (t1 + kAt) = cusum (tl +(k—1)Ar) + e(t1 + kAt)

k
= > e(t; + jAt
j=0(1 VA

The absolute value of the cusum is compared, at each
sampling time, to two thresholds, named th1 and th2.

If the absolute value of cusum(?#, + kt) is inferior
to thl, the linear model is still acceptable.
If the absolute value of cusum(#, + kAt ) is superior

to thl, the signal value y(Z, +kA¢) and the

corresponding time is stored in a block, named block
of abnormal values.

If the absolute value of cusum(?, + kAt ) is superior

to th2, the linear model is no longer acceptable and a
new linear function is calculated using least squares
estimation on the values contained in the block of
abnormal values, if the length of the block is superior
to a certain number (at least 3). The values contained
in the block of abnormal values correspond to the

data (it + /A S0 that
thl < abs(cusum(tl + kAt)) < th2

Once a new linear function has been calculated, the
cusum is reset to 0. An illustration of the technique
is presented in figure 1.
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Figure 1 : Description of the technique used for
segmentation

To prevent discontinuities in the filtered signal which
would not correspond to a physiological behaviour,
the algorithm analyses the continuity between two
consecutive segments. When a new linear function
has been calculated, the time of the intersection
between this new function and the preceding one is
immediatly calculated. If the time of intersection
occurs after the current time or before the beginning
of the preceding segment, the filtered signal is
assumed to be discontinuous (ie there is a step
variation between the two segments). The new
segment starts at the instant when the value of the



cusum crossed the first threshold (thl) for the last
time. If the time of intersection occurs after the
beginning of the preceding segment and before the
current time, the beginning of the new linear function
is the time of intersection, if the fit on the data,
calculated with the CUSUM, is better this way.

Since the CUSUM technique is very sensitive to
artefacts, it is necessary to reject them before the
calculus of a new segment. Artefacts occuring on
biological signals correspond to a sudden and
important variation in the signal that can last for a
few samples.

The algorithm rejects the artefacts in the following
way. If the variation of the signal between two
consecutive samples is measured larger than a fixed
threshold (Arl), the value of the preceding sample
and the corresponding cusum is stored. If the
difference between the next values and the value
stored still remains important (superior to a second
threshold Ar2) after a given time interval
(TimeArtefact), the variation is considered a step and
the whole data is considered for segmentation. Else,
if the value of the signal decreases under Ar2 before
TimeArtefact, the variation is considered an artefact,
the data are removed from the block of abnormal
values and the cusum is reset to the value stored
before the artefact.

The segmentation algorithm has 5 tuning parameters,
thl and th2 to tune the decomposition into linear
segments, Arl, Ar2 and TimeArtefact to reject
artefacts. An analysis of their effect on the
decomposition into segments is presented in the next
part.

3.RESULTS AND DISCUSSION

In order to analyse the results obtained, the
segmentation algorithm is tested at first on simulated
data, then on real data recorded on ICU patients.

3.1.Results on simulated data

A set of data was created, composed of 1000
simulations. Each simulation was composed of 2000
samples, corresponding to three successive linear
functions, the parameters of the functions changing at
time 500 and 1000. The change at time 500 between
the first and the second function was continuous,
whereas the change between the second and the third
function, at time 1000 was discontinuous. To
simulate biological rythms that can be present in the
clinical data, a sinusoidal function with a period of
20 samples was added to the data, in addition to
white noise.

At each simulation, the parameters of the three linear
functions (slopes and ordinates) were randomly
chosen and so were the sinusoide and noise
amplitude, which were respectively 3% and 10% of

the value reached at time 1000 by the first function.
Thus, the algorithm was tested with varying signal to
noise ratios, depending on the parameters obtained
for the first function. An example of a simulation is
given in figure 2.

On the data of each simulation, were processed the
segmentation algorithm, a moving average filter with
a time window of 30 samples and 60 samples and a
median filter with the same time windows. The
euclidian distance between the filtered data obtained
by each method and the three linear functions with
the sinusoide and the noise removed (ie the signal to
be extracted) averaged from the 60™ sample to the
2000" named D, was used to compare the results
obtained by the three methods.

The tuning of the segmentation algorithm parameters
was made automatically at each simulation. thl was
calculated on the first 60 samples, it corresponds to
four times the maximum value obtained by the
cusum on these samples and th2 was chosen as 10
times thl.

The median value of D, calculated from the 1000
simulations, is equal to 16.3 (standard deviation 13.7)
when the segmentation algorithm is used. It is equal
to 36.7 (standard deviation 16.1) with the 30 samples
moving average and to 62.7 (standard deviation 29.2)
with the 60 samples moving average. For the median
filter, the results are respectively 39.5(standard
deviation 18.0) with the 30 samples time window,
65.3 (standard deviation 30.2) with the 60 samples
time window. The results obtained by the
segmentation algorithm are better (D strictly smaller)
than the other methods for at least 940 simulations
over the 1000 (94%).

The results obtained on these simulated data show
that the segmentation algorithm is able to correctly
eliminate the sinusoidal and the random components
of the signal without distortion of the deterministic
part, when it is composed of linear parts.
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Figure 2 : An example of a simulation, and the result
obtained with the segmentation algorithm

3.2. Results on real data



Clinical data were recorded at a frequency of 1Hz, on
18 patients admitted in the ICU service of Lyon-Sud
Hospital Center. Each recording lasted 2 hours,
during which the following signals were monitored :
heart rate, systolic, diastolic and mean pressures,
oxygen saturation and maximal pressure in the
airways. The data were extracted from the analogical
signals, with no prior treatment. During these
recordings, a medical observer stayed bedside and
analysed each alarm event that occurred.

For each clinical signals, a tuning set was proposed
for the algorithm, that gave correct results for most
patients.

The parameter thl is a threshold that must be tuned
taking into account the process noise. Indeed, it is an
indicator of the moment when the current linear
function is starting not to fit the data anymore.
Assuming the noise is periodic, its value must be
superior to the maximal value reached by the noise
integral on a time interval at least equal to half a
noise period. If the noise caracteristic (amplitude and
period) is unknown, thl may be estimated, for each
patient, during the first minutes of the recording. The
time window during which it is estimated must be
long enough to acquire at least half a period of the
slowest biological rythm and short enough for the
linear estimation to be correct.

The parameter th2 determines the filtering effect. If it
is small, a new segment will be calculated very often,
and the filtering effect will be poor. Else, if it is too
long, the algorithm will take a long time to detect a
change in the data and some important variations
may be filtered.

Because the algorithm will be used to process the
data on line as a pre processor to an alarm filtering
system, it is interesting to tune th2 in function of the
delay required to detect a change in the data. It is an
appreciation that can be given by clinicians. Chosen
this way, th2 corresponds to the integral of the
change to be detected on a time interval equal to the
delay necessary to detect the change (ALT for a level
change A in T samples, for instance).

For example, th2 was tuned to 600, when segmenting
the heart rate. This means that the algorithm will take
60 samples (60s in this case) to detect a level change
of 10 bpm. It will detect a slope change of 20 bpm in
the same delay. However, it will take only 30
samples if it is a level change of 20 bpm. This is
actually an advantage of the algorithm to adapt its
reaction in function of the importance of the changes.

Parameters Arl and Ar2 are used to prevent the
algorithm to react to artefacts. Their values can be
tuned in function of the kind of artefacts that should
be removed (amplitude and time of duration). For
example, flushing the arterial catheter used to
measure arterial pressure generates sudden variations
in the systolic pressure that can last several seconds.
Most of these artefacts were removed from the
systolic ~ pressure  signal with the tuning

Ar1=100mmHg,
TimeArtefact=S8s.
The tuning proposed for each kind of signal is
presented in table 1.

Ar2=90mmHg and

Table 1 : Set of tuning values proposed for each
biological signal monitored

PAS PAM PAD
thl 40 40 40
Alevel 14 mmHg 8mmHg SmmHg
Time of 60 60 60
detection (s)
th2 840 480 300
Arl 100 45 45
Ar2 90 30 30
TimeArtefact 8 8 8

HR Spo2 Pmax
thl 12 1 10
A level 10 bpm 1% 1 mmH,O
Time of 60 60 180
detection (s)
th2 600 60 180
Arl 150 11 60
Ar2 135 9 50
TimeArtefact 8 8 10

An example of the results obtained on real data is
shown in figure 3. It presents a recording of the
systolic and diastolic blood pressures, of the heart
rate and pulse oxymetry, during 2 hours on the same
patient, at a frequency of 1 Hz. We can see that the
data are correctly filtered, and the deterministic
variations in the signal are correctly extracted. At
time 35 minutes, artefacts are correctly eliminated on
the systolic and diastolic pressure signals. At time
110 minutes, the consequence of the flushing of the
catheter can be observed on the signal of systolic and
diastolic pressure. The segmentation algorithm
eliminated it on the systolic pressure signal, but kept
it as a level change on the diastolic pressure because
the signal takes a few seconds to increase, which is
not the definition for an artefact.

Using a limit alarm system with a preset limit fixed
at 50 mmHg for the diastolic pressure generates
several false alarms during the first hour of
recording. The alarms would be detected as false
(and would not ring) if the filtered data were used by
the alarm system. Only one alarm would be ringed at
time 70 minutes. This alarm corresponds to an
effective decrease of the diastolic pressure, for which
the care giving personnel had to react by giving
medicine to the patient.

On the Spo2 data, two episodes of hypoxemia occur,
at time 5 minutes and 45 minutes. The first episode,
though it lasts a short time, is a real event for the
patient : the respirator was deconnected for a short
time. It is correctly restituted by the segmentation
algorithm which took 20s to detect this event. Then,
at time 70 minutes, an artefact occurs which is
filtered by the algorithm
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Figure 3 : Biological signals and the corresponding
output from the segmentation algorithm

4. TREND EXTRACTION

The segmentation algorithm delivers information on
the signal, that can be used to extract information on
the signal variations. In this paragraph, it is shown
how trends can be calculated on line with the
algorithm.
We define the trend of the signal on the time interval
T as the increase observed on the segmented data
from time tnow-T to tnow, tnow being the current
time, divided by the time window.

1 ksl
trend (ti) = — > [s(k +1) = s(k)]

T\ ==
Because the segmented data are not polluted with
noise, it is possible to calculate the trend on any time
window, even very short, which is difficult to do with
classical methods.
The results obtained with the segmentation algorithm
are compared to those obtained when the trend is
estimated by a best-fit least square affine function,
calculated on a moving block of length time T.
The trend is calculated on the Spo2 signal, which is a
parameter for which deterministic variations can be
very sudden, when a desaturation in oxygen occurs.
It is can be interesting to know what was the
evolution of the signal during the last minute, for
example.

Results obtained are presented on figure 4. The trend
calculated with the second method is affected by the
noise corrupting the Spo2 signal, whereas the trend
calculated with our method is not. The two
hypoxemia episodes are clearly visible on both
trends, but the trend calculated with the second
method is also sensitive to an artefact occuring
around 70 minutes. This would generate a false alarm
if used in an alarm system.

120
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T

Figure 4 : Trend calculated with the segmentation
algorithm and with best-fit least squares

5. CONCLUSION

The segmentation algorithm presented in this paper is
an interesting tool to pre process on line monitoring
data. It is able to correctly remove noise, periodic
components, artefacts and transients corrupting the
data and restitutes an undistorted filtered signal. It
has the ability to react promptly in front of important
changes, without being too reactive to transients. It is
rather easy to tune, with two sets of parameters, one
for the filtering effect, the other for artefact rejection.
A set of tuning is proposed in this paper which gave
good results for the 36 hours of recordings we
dispose of.

Using the algorithm as a pre processor to alarm
systems seems interesting. By removing artefacts and
transients on the data, it can reduce the number of
false alarms in limit alarm systems. The information
it delivers can be used to determine on line the trend
of the signal, at any time length, even very short,.
This is an information very useful for “more
intelligent” alarm systems, like knowledge-based
systems, which take into account the evolution in
time of the signal. We are now studying a
methodology for pattern extraction, using the
segmentation algorithm.

The segmentation algorithm is also a powerful tool to
compress data, in a purpose of storage. Indeed, the
output of the segmentation algorithm consists in three
parameters (the slope, the ordinate and the starting
time of the linear function), which enable the
reconstruction of the filtered signal. The size of a file
containing the 5 monitored data at 1hz during 2 hours
is about 300 ko, it decreases to 7 ko when the
successive affine functions parameters are stored.
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APPENDIX

i= current tine
Acqui sition of the signa
signal (i)=[i,value(i)];
Calculation of the first derivative
der (i) =val ue(i)-value(i-1)
Research of artefact
i f abs(der(i))>Ar1& n==0)
&(fla~=1),
CUS1=cusum
n=1;
d=val ue(i-1);
end
fl a=0;
if (n>=1) & n<Ti neArtefact),
n=n+1;
i f abs(d-value(i))<Ar2,
cusun=CUS1,;
n=0;
val artefact=[];
fla=1;
end
end
i f n==Ti meArtefact,
n=0;
fla=1;
Abpt s=[ Abpt s; val art ef act ]
val artefact=[];

end
Cal cul us of cusum
extrapol ati on=pl*(i-xo0l)+yol
di f ference=val ue(i) -
extrapol ati on;
cusunrcusumtdi f f erence
if cusum > threshol dl
i f (abs(cusum >t hl) & n==0),
Abpt s=[ Abpt s; si gnal (i)]
nAbpt s=nAbpt s+1
i f cusum > threshol d2
i f(abs(cusum >t h2)
&( nAbpt s>nAbpt sni n),
cal cul ation of the new |linear
function
[ p2, yo2] =Li near Appr oxi mat i on( Abpt s(
1 2));
calculation of the intersection
between the 2 functions
x02=Abpts(1,1);
xo2p=fl oor ((yo2-yol+pl*xol-
p2*x02)/(pl-p2));
determ nati on of the new paraneters

in function of the intersection and

the fit on the data

i f
(xo2p>Abpt s(l engt h(Abpts(:,1)),1))|
(xo02p<xo0l)| (x02p<=0),
pl=p2;
x0l=Abpts(1,1);
yol=yo2
el se
if (xo02p>=x01) &
(x02p<=Abpts(1,1)),
cal cul ation of the best fit with
t he cusum
Deci si on of continuity or
di scontinuity between the
consecutive functions
el se

i f
(xo02p>Abpts(1,1)) & xo2p<=Abpt s(Il eng
th(Abpts(:,1)),1)),
cal cul ation of the best fit with
the cusum
Deci si on of continuity or
di scontinuity between the
consecuti ve functions

end
end
end
Resetting of the paraneters
cusun¥o;
nAbpt s=0;
Abpts=[];
end
el se
I f cusum <t hr eshol di,
nAbpt s=0;
Abpt s=[];
end



