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Abstract:In this paper, under some assumptions a nonlinear controller based on
differential geometry theory of nonlinear control system and pole-assignment method is
designed, and applied to synchronize output signals of high dimensional chaoctic system.
Using the method, we can synchronize output signals formed by linear or nonlinear
composition of single or multiple state variables of the chaotic system. The controller is
easy to be realized and can be adapted to a lot of nonlinear systems. Computer simulation
results show the excellent performance of the proposed method. Copyright © 2002 IFAC
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1 INTRODUCTION

In the last decade, synchronization in chaotic
dynamical systems has received a great deal of
interest among scientists from various fields
(Carroll & Perora,1990;Chen & Dong,1998). As
a particular class of nonlinear systems, chaotic
systems can aso be controlled well by many
methods which are proved effective for
numerous nonlinear systems (Bernardo, 1996;Ge
et al., 2000; Femat et al., 2000; Hegazi et
al.,2001; Fah & Tung,1995). Fah & Tung(Fah &
Tung,1995) use exact linearization method to
control chaotic systems, and based on it noise
has been studied by Liaw & Tung (Liaw &
Tung,1996). Through combining differential
geometry with nonlinear dynamical system
theory, a method is proposed which can
synchronize arbitrarily designated scalar output
signal composed of either single state variable or
linear or nonlinear combination of multiple state
variables of chaotic system (Gao et al., 2000g;
Gao et al.,2000b). On these basis , in this paper,
a controller is designed by differential geometry
theory and pole-assignment method, which
extends the above mentioned results to
multi-input and multi-output situation.
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2. PROBLEM DESCRIPTION

Consider two multi-variable nonlinear
systems

X =f(x,1),

¥ h(X),x(0F %,0R",
x =f(x,t) +g(x)u,

y= h(x),x(0F x,OR",

in which

ff:R"xR - R",
f,f0C”,

§ = col (... 9.
h :col(ﬁi ...ﬁm),
u =col(U;...Uy),
y =col(Yi...Ym),
h =col(h...hy),

g(x) =[g1(x)...gm()],

g :R" - R".h h:R" - R,
h ,hd C*,x(t),x(t)OR",

y OR,i =1,---,m,

l1<m<n.

@
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(1) is called the driving system and (2) is called
the driven system. The problem considered in
this paper is how to design a suitable control
law wuwhich makes the outputs of (1) and (2)
satisfy:
limlly-yIF0 ©)
Since nonautonomous systems can always be
transformed to autonomous systems by
extending state space (Wiggins, 1990), therefore,
we only consider the case in which (2) is
autonomous.

3 CONTROLLER DESIGN

First, we introduce some terminologies in
nonlinear control system theory (Isdori,1989;

Zhang ,Cai& Bien, 2000) .
Define j-th Lie derivative of function h;(x)
respectto f(x) as

o(L™h (v))

X

Lih(x) = f(x),

. ih
i (o = XD g,
Leh () =h (x), ] =12,
B(x°,0) :{x

neighborhood of x°, inwhich J>0.

Denote “x - xo“ < 5} as the

Definition (2) has vector
{r,...rya x° if
(i)ngL';n(x):o,Dlsi,jsm,mksri—L

relative degree

Ox0B(x°,9),
(i) MXm matrix
Ly, Ly (%) -+ Ly, L My (x)

Ly Ly (x)-- L, LEh,(x)
a(x) = 4

L, L th (%)L L;m‘lhm(x)_

isnonsingular at x°.

Proposition (Isdori,1989) Suppose (2) has a
(vector) relative degree {r,....r,}a x°.Then
rn+--+r,s<n. Set, for 1<i<m

d=hx

@ = Lehi (x)

g (x) =L h(x),

if r=r+---+r,is grictly less than n , it is
adways possble to find n-r functions
@1, @ sSuchthat the mapping

®(x) = col[@(x),... 4% (%),... 4" (x)....,
(/i:(x),(prﬂ(x),...,(pn(x)]

has a jacobian matrix which is nonsingular at

x°and therefore, qualifiesasaloca coordinates

transformation in a neighborhood of x°.The

value of these additional functions atx°can be

chosen arbitrarily. Moreover, if the distribution
G = span{gy,....8m}

is involutive near x°,it is always possible to
choose ¢ 44,...,¢, in such away that

Ly, A(x) =0,
for all r+1<i<n,foral 1<j<m, for dl x

around x°.

Transformed by @ (2) becomes
§ = AS +B(b(x) +a(x)u),
1 =qE )
y=¢, ®)
£(0) =&, OR",
n(0) =moOR™,
in which A =diag(A,),

0 1,
Aj = ) (6)
0 0

B =diag(B;), 1l<i<m,
B; =c0l(0,---,01),q (7
EOR",nOR"™",
g=col@El...g™,
N =Col(@ 1, @),
&' =col(d,....& ) =col(dd.....q)-
a(x) isdefined as in (4),
L) |
L;'th(x)
b(x) = ) ®

L (x) |
wheng =0, n =q(0,n)iscaled zero dynamics
of system (5).

Next we discuss the controller design.

Hypothesis 1 Suppose the reference signd



¥, OC", we denote the j-th derivative of ¥, as
yD1<j<r, and

199 (1) k My, 0t 0[0,00),M; OR™,
Hypothesis 2 To system (2), no matter whether
the case is in equilibrium, period, quasi-period,
chaos or hyperchaos, the following conditions
aways hold:

[x(®)]| <M, 0tO[0,e0), M, OR™,
|a(x)| < M3, 0t 0[0,0), M3 OR,
[b(x)] < M,,0t0[0,e), M, OR",

[b(x) -3
in which
§O = col (987 ,..., §8m)) = col (h{W,..., him).,
Remark 1: In this paper, we suppose all outputs
of (1) and (2) are available.
Remark 2: Although hypothesis2 looked quite
strict, the hypothesisis easy to be satisfied since
the move- ment of chaotic systemisina
bounded region.

<W,0t0[0,00),WOR*

Denote partial -variable-errors of synchronization
as

€ €, Y1

_lea[_|82 y2
€=, =1. =.

en| 18Sm] | ¥m

&) 50

2| | oW
inwhich ¢, =2 -3, =| % || |,

&l L5

9Disthe j -th derivativeof § , 1<j<r -1,
1<i < m, therefore

&.;1 g’l

6= gZ _ .5\72
L ©
&.:m §7m

= Ae + B(b(x) +a(x)u) - By("
Theorem If multi-input and multi-output
system(2) has vector relative degree I respect to

some g(x) and sdatisfies hypothesisl and
hypothesis2, suppose control law u is selected as

u=-(a"x)(b(x)+v-y")) (10)

in which
v =Ke 1
K =diag(K;), (12)

K, =(?.¢,....c/™h), 1sismlsj<r -1,

c’,ct,...,.cl " are coefficients of Hurwitz poly-
nomial

F-26 -2

P(s)=s" +¢ s+ ¢ %S 0

+ot G
then for al initial condition

x(0) OR",e(0)OR'
we always have

tILrPO e(t)=0.
proof: Since (2) satisfies hypothess 1 and
hypothesis 2, from (10) we can know that the

control isbounded. Substitute (10), (11) into (9),
we get

¢ = (A -BK)e, (22)
from (6),(7) we have,
det(JAI - (A - BK))

= Iﬂldet(/llri ~(A; -BiK;))
=1

According to the selection method of K, we
know all eigenvaluesof A; - B;K; arenega-

tive, so (9) is asymptotic stable, and moreover,
in above procedure we don’'t use initial value, so
(9) isglobal asymptotic stable. O

Remark 3: Sincethe choice of g(x) isquite
flexible, usually we can find appropriate g(x)
which makes (2) have vector relative degree.

4  SIMULATION

Consider following nonlinear system

X =1(%),

1= %4, (13)

Yo =X
it is the model of
movement, in which

_E)’iz - E)’il + 8)24, —‘
X1 X5 — GXg,

heart-blood coupling

f(X) =| PR + Po%, = P55 + MK,

- PX, + DX,
P)%X; +5.0% —6.0x10* %3 + HX,,
| = PyXs — MX,. ]
where parameters
E=160, A=4592 , B=5.0 are constants.
When G =40, R, =100, R, =34, P, =60.0,
P = 12.0x10°, M =15 D =0.012,

H =0.012, the maximal Lyapunov exponent of
the system is 2.162(He et al., 2000) therefore,



the system is chaotic, which is shown in figurel.
Suppose the dynamics and output of the
controlled system equal those of (13), but the
initial condition is not the case, so the controlled
system can be written as:

x =f(x) +g(x)u,

Y1 =%, (14)

Y2 = Xs,
The aim of smulation is to synchronize the
output of (13) and (14) by devising controller u.
Choose

g(x) = {gl(X) gz(X)} )

in which
-1 1
=col (0, ——,0,——,0,
21(x) ( EMP’ ' BMP
3BR,xZ - BP, + 1)
BZ+M?p 7’

g,(x) =coal(0,0,0,0,011).
By simple calculating we know (14) has vector
relative degree (3,2) and from (4), (8) we get
[ B-1
a(x) = MP,B ’
-1
L BM
det(a(x)) =1#0,
by (x)
_bz (x) ,

b(x) =

in which
by (x) = (E? + E(A~ x3))(Exp = Bxg +
Bx,) = (E? = E)(A% = Xp = XX5) =
Ex, (XX, =Gx3) + (-EB + B(P, -
3Px2))(PXs + PyX, — PoXS + Mx;) +
BPy(~PX, + Dx) + BM (~RyXg — Mx,),
b, (x) = D(Ex; — Exg + BX,) =
PL(PXs + PyXy = Pyxj + Mxy),
P ®=b®), ¥ ®=b(),
the controller is devised according to (13).
Assign all polesof (15) at -2, and therefore,
K,=(8, 16, 6), K,=(4, 4). Figure2 shows that

the outputs of (16) and (17) are synchronized,
which proves that the controller is effective.

5 CONCLUSION

In this paper, based on multi-input and
multi-output differential geometry theory and

pole-assignment method, a controller is designed.

The designing method is easy to be realized and

computer simulation has proved its effectiveness.
The research results in this paper can be adapted
to quite a wide class of nonlinear systems such
as can be applied to secret communication
especidly in the situation without enough
channel resources.

Figl. phase diagram of system (13)
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Fig2. errors of synchronization, the controller

istakenonatt=4. € =X —X,€, = X5 — X5
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