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Abstract: A new criterion for nonregular static state feedback linearization is
presented for a class of affine nonlinear control systems. This criterion is applied
to several classes of nonholonomic systems and discontinuous stabilizing control
design is outlined based on linear system theory and the backstepping techniques.
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1. INTRODUCTION

Feedback linearization is a standard technique for
control of many nonlinear systems. Since the pi-
oneering work of (Krener, 1973) which addressed
linearization of nonlinear systems via state diffeo-
morphisms, the problem of linearization has been
studied using increasingly more general trans-
formations. The problem of regular static state
feedback linearization was solved in (Brockett,
1978) and (Jakubczyk & Respondek, 1980). The
problem of regular dynamic state feedback lin-
earization was initialed in (Cheng, 1987) and ad-
dressed in many references, e.g., (Charlet, Levine
& Marino, 1989; Charlet, Levine & Marino, 1991;
Guay, McLellan & Bacon, 1997). Recently, the
problem of nonregular static/dynamic state feed-
back linearization was studied in (Sun & Xia,
1997).

Nonregular state feedback linearization is a rig-
orous design theory/technique. Comparing with
regular dynamic feedback linearization, this ap-
proach does not introduce additional dynamics,
while it is applicable to a broad class of practi-
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cal engineering systems, such as induction mo-
tors (Sun & Xia, 1996) and robots with flexible
joints (Ge, Sun & Lee, 2001a). Moreover, asso-
ciated nonregular feedback linearization with the
backstepping design technique, the so-called non-
regular backstepping design approach provides
a Lyapunov-based recursive design mechanism
(Sun, Ge & Lee, 2001). This approach is directly
applicable to a class of complex mechanical sys-
tems in Euler-Lagrange form and does not involve
any coordinate transformation, thus enable us to
keep close insight into (and make full utilization
of) the physical properties of the systems. This
approach can also avoid undesired cancelation of
beneficial nonlinearities and enhance robustness
and softness through appropriate backstepping
design of Lyapunov functions.

In this paper, we propose a nonsmooth formula-
tion for the problem of nonregular state feedback
linearization. One motivation for this extension
stems from the existence of systems that cannot
be asymptotically stabilized by a single continu-
ous pure feedback controller (Brockett, 1983). The
insight work of (Celikovsky & Nijmeijer, 1996;
Clarke, et al., 1997) also inspire us to investigate
nonsmooth state and feedback transformations.
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2. MAIN RESULT

Consider the affine nonlinear system given by

ẋ = f(x) +

m
∑

i=1

uigi(x) = f(x) + g(x)u (1)

where x ∈ Ω ⊆ <n is the state, u ∈ <m is
the input, entries of f(x) and g(x) are analytic
functions of x, and rank g(x) = m,∀x ∈ Ω.
Without loss of generality, assume f(0) = 0 and
Ω is a connected open set containing the origin.

Definition 1. Nonlinear control system (1) is said
(nonsmooth) nonregular (static state) feedback
linearizable, if there exist a state transformation

z = T (x), z ∈ <n (2)

and a nonregular state feedback

u(t) = α(x) + β(x)v(t), v ∈ <m0 ,m0 ≤ m(3)

where entries of T (x), α(x) and β(x) are defined
and smooth on an open and dense subset Ω0 of
Ω, and map T : Ω0 → T (Ω0) is a diffeomorphism,
such that the transformed system with state z and
input v is a controllable linear system.

The following theorem establishes nonregular
feedback linearizability for a class of nonlinear
system.

Theorem 1. For a two-input affine nonlinear sys-
tem

ẋ = f(x) + g1(x)u1 + g2(x)u2 (4)

suppose there exist vector fields p(x) and q(x)
with span{p(x), q(x)} =span{g1, g2}, and a se-
quence of integers 0 ≤ κ0 < κ1 < · · · < κl ≤ n− 1
with l ≥ 2, such that the nested distributions
defined by

G0 = span{q}

Gi =Gi−1 + adfGi−1, i ≥ 1, i 6= κ1, · · · , κl

Gκj =Gκj−1 + adadκ0
f
pGκj−1, j = 1, · · · , l − 1

Gκl =Gκl−1 + span{p} (5)

satisfy the following conditions

(i) rank Gn−1 = n;
(ii) Gκl−2 and Gn−2 are involutive;
(iii) adfGκj−1 ⊆ Gκj for j = 1, · · · , l; and
(iv) ad

ad
j

f
p
Gi−1 ⊆ Gi for j = 0, · · · , κ0, and

i = 0, · · · , n− 2

then system (4) is nonsmooth nonregular feedback
linearizable.

Proof. It follows from conditions (iii) and (iv)
that

Gk = span{q, · · · , adkfq}, k = 0, · · · , κ1 − 1

Gκj+k =Gκj−1 + span{χj , · · · , ad
k
fχj},

j = 1, · · · , l − 1, k = 0, · · · , κj+1 − κj − 1

Gκl+k =Gκl−1 + span{p, · · · , adkfp}

k = 0, 1, · · · (6)

where χj , j = 1, · · · , l−1 are given recursively by

χ1 = adadκ0
f
p(ad

κ1−1
f q)

χj = adadκ0
f
p(ad

κj−κj−1−1
f χj−1), j = 2, · · · , l − 1

Accordingly, dimGi ≤dimGi−1 + 1 for i ≥ 1. It
follows from condition (i) and dimG0 = 1 that

dimGi = i+ 1, i = 0, 1, · · · , n− 1 (7)

Because span{p, q} =span{g1, g2}, one can ex-
press vector fields p and q in terms of g1 and g2
as follows

p(x) = β̄1,1(x)g1 + β̄1,2(x)g2(x),

q(x) = β̄2,1(x)g1 + · · ·+ β̄2,2(x)gm(x)

where β̄i,j(x) are smooth real-valued functions
and elements of the matrix

β̄(x) =

[

β̄1,1(x) β̄1,2(x)
β̄2,1(x) β̄2,2(x)

]

, rankβ̄(x) = 2

Applying the input transformation

u = β̄(x)v

to system (4) gives

ẋ = f(x) + p(x)v0 + q(x)v1 (8)

where v = [v0, v1]
T is the new input to be

designed.

It is readily seen that, if the transformed system
(8) is nonregular feedback linearizable, then the
original system (4) is nonregular feedback lineariz-
able too.

From the Frobenius Theorem, there exists a real-
valued functions φ(x), such that

dφ ⊥ Gκl−2, dφ 6⊥ Gκl−1 (9)

As a matter of fact, φ(x) can be replaced by any of
its non-zero constant multiplication cφ(x), c 6= 0
without violating (9). This flexibility in choosing
φ will be utilized in the following derivations.

Let

v0 = φ(x) (10)



System (8) can be rewritten as

ẋ = f̄(x) + q(x)v1 (11)

where f̄(x) = f(x) + φ(x)p(x).

In the sequel, we focus on system (11) and prove
its linearizability.

Because Gn−2 is involutive and of dimension n−1,
by Frobenius’ Theorem, there exists a real-valued
function h(x), such that

span{dh} = G⊥n−2 (12)

Note that

q ∈ G0 (13)

adf̄q = adfq + φadpq (14)

For convenience, for two sets S1, S2 and an ele-
ment s, let us denote s ∈ S1 − S2 if s ∈ S1 and
s 6∈ S2. It follows from (14) and condition (iv)
that

adfq ∈ G1 −G0, adpq ∈ G1 (15)

Suppose adf̄q ∈ G0, then it follows from (15) that
adpq 6∈ G0. In this case, adfq + cφadpq 6∈ G0 for
any constant c 6= 1. Accordingly, by appropriately
choosing of φ, it can be always made that

adf̄q ∈ G1 −G0 (16)

Suppose for some 1 ≤ i ≤ n− 2, we have

ad
j

f̄
q ∈ Gj −Gj−1, j = 1, · · · , i (17)

Then, it can be proven that

adi+1
f̄

q ∈ Gi+1 −Gi (18)

To this end, compute

adi+1
f̄

q = adf (ad
i
f̄
q) + φadp(ad

i
f̄
q) + (Ladi

f̄
qφ)p

For i < κl − 1 and i 6= κj − 1, j = 1, · · · , l − 2, it
follows from (17) that Ladi

f̄
qφ = 0, and

adf (ad
i
f̄
q) ∈ Gi+1 −Gi, adp(ad

i
f̄
q) ∈ Gi+1

Therefore, up to a constant multiplication of φ, it
has

adi+1
f̄

q = adf (ad
i
f̄
q) + φadp(ad

i
f̄
q) ∈ Gi+1 −Gi

For i = κj − 1 with 1 ≤ j ≤ l − 1, we have

adf (ad
i
f̄
q) ∈ Gi+1, adp(ad

i
f̄
q) ∈ Gi+1, Ladi

f̄
qφ = 0

Therefore,

adi+1
f̄

q = adf (ad
i
f̄
q) + φadp(ad

i
f̄
q) ∈ Gi+1

Suppose

adf (ad
i
f̄
q) ∈ Gi, adp(ad

i
f̄
q) ∈ Gi (19)

then by Jacobi identity (Isidori, 1989, pp.10)

adadfp(ad
i
f̄
q) = adf (adp(ad

i
f̄
q))

−adp(adf (ad
i
f̄
q)) ∈ Gi

and by recursion

ad
ad

j

f
p
(adi

f̄
q) = adf (adadj−1

f
p
(adi

f̄
q))

−ad
ad

j−1

f
p
(adf (ad

i
f̄
q)) ∈ Gi, j = 2, 3, · · ·

which contradicts (7). Consequently, relation (19)
must not be hold, thus it has

adf (ad
i
f̄
q) ∈ Gi+1−Gi, or adp(ad

i
f̄
q) ∈ Gi+1−Gi

which imply that, up to a constant multiplication
of φ, it has

adi+1
f̄

q 6∈ Gi

For i = κl − 1, we have

adf (ad
i
f̄
q) ∈ Gi+1, adp(ad

i
f̄
q) ∈ Gi+1

Ladi
f̄
qφ 6= 0, p ∈ Gi+1 −Gi

Therefore, up to a constant multiplication of φ, it
has

adi+1
f̄

q = adf (ad
i
f̄
q) + φadp(ad

i
f̄
q)

+(Ladi
f̄
qφ)p ∈ Gi+1 −Gi

For κl ≤ i ≤ n− 2, we have

adf (ad
i
f̄
q) ∈ Gi+1−Gi, adp(ad

i
f̄
q) ∈ Gi+1, p ∈ Gi

Therefore, up to a constant multiplication of φ, it
has

adi+1
f̄

q ∈ Gi+1 −Gi

The above reasonings show that (17) implies (18)
for 1 ≤ i ≤ n− 2. From the initial condition (16),
it follows by induction that

adk
f̄
q ∈ Gk, k = 0, 1, · · · , n− 2 (20)

adn−1
f̄

q 6∈ Gn−2

Accordingly, we have

< dh, adk
f̄
q >= 0, k = 0, 1, · · · , n− 2

< dh, adn−1
f̄

q >6= 0

which, by (Isidori, 1989, Lemma 4.1.3), implies
that

LqL
k
f̄
h = 0, k = 0, 1, · · · , n− 2

LqL
n−1
f̄

h 6= 0

Define new coordinates z and new input w as



z = [h, Lf̄h, · · · , L
n−1
f̄

h]T (21)

w=Ln
f̄
h+ (LqL

n−1
f̄

h)v1 (22)

The state space description of system (11) in z-
coordinate is then given by

ż = [z2, z3, · · · , zn, w]
T (23)

which is exactly the single-input Brunovsky canon-
ical system.

By Definition 1, system (11) is nonregular feed-
back linearizable, which implies that the original
system (4) is also nonregular feedback lineariz-
able. In addition, the corresponding linearizing
state and input transformations for system (4) are
equation (21) and

u = β̄(x)







φ(x)
w − Ln

f̄
h

LqL
n−1
f̄

h






(24)

respectively. ♦

Remark 1. Once the linearizing output h(x) and
the function φ(x) (called singular input function
in the sequel) are determined, the linearizing
state and input transformations (21) and (24)
can be calculated routinely. The determination
of h(x) and φ(x) involve the integration of a set
of completely integrable systems, or equivalent,
the solution of some solvable partial differential
equations, which may not be produced in a routine
way. However, for many nonlinear systems with
some particular structure, the integration of the
integrable systems is available, thus h(x) and φ(x)
can be explicitely obtained accordingly.

3. APPLICATION TO NONHOLONOMIC
SYSTEMS

3.1 Linearizable Nonholonomic Systems

The criterion provided in the previous section
is very general, and several general conventional
forms of nonholonomic systems are special cases
under our framework.

Firstly, consider nonholonomic systems of the
form

y1
(r1) = u1

yi
(ri) = ξi(ȳ

1, · · · , ȳi, yi+1)u1, i = 2, · · · ,m− 1

ym
(rm) = u2 (25)

where m ≥ 3, ri ≥ 1, ȳi = [yi, · · · , yi
(ri−1)]T ,

i = 1, · · · ,m, and ξi, i = 2, · · · ,m− 1 are analytic
functions vanishing at the origin with

∂ξi

∂yi+1
6= 0, i = 2, · · · ,m− 1

It can be verified that Theorem 1 holds and the
linearizing output and the singular input function
could be explicitly constructed, say

h= y1

φ= φ1(y1, · · · , y
(r1)
1 , y2) with

∂φ1

∂y2
6= 0 (26)

Note that model (25) includes the chained form
(Murray & Sastry, 1991) and the second-order
chained form (Egeland & Berglund, 1994) as spe-
cial cases.

Secondly, consider nonholonomic systems of the
form

ẋ =















1
0
0
...
0















u1 +















0
1

ξ3(x1)
...

ξn(x1)















u2 (27)

where ξi(x), i = 3, · · · , n are analytic functions
vanishing at the origin with

∂i−2ξi

∂xi−21

6= 0, i = 3, · · · , n

It can be verified that Theorem 1 holds with

h(x) = x1

φ(x) = xn −
n−1
∑

i=2

ϕi(x1)xi (28)

where ϕi(x1), i = 2, · · · , n− 1 satisfy







ϕ3
...

ϕn−1






=















∂ξ3

∂x1
· · ·

∂ξn−1

∂x1
. . .

∂n−3ξ3

∂xn−31

· · ·
∂n−3ξn−1

∂xn−31















−1












∂ξ3

∂x1
...

∂nξn

∂xn−31













ϕ2 = ξn −
n−1
∑

j=3

ϕj(x)ξj(x)

Note that the above model includes the power
form (M’Closkey & Murray, 1992) as a special
case.

Thirdly, consider nonholonomic systems of the
form

ẋ =



















1
0
x2
x3
...

xn−1



















u1 +



















0
1
−x1
0
...
0



















u2 (29)



It can be verified that Theorem 1 holds with
linearizing output

h = x1

The singular input function can be determined
recursively by

φ3(x) = ϕ3(x1) + x3 + x1x2

φi(x) = ϕi(x1) + xi +
1

i− 2
x1φi−1(x), i = 4, · · · , n

φ(x) = φn(x) (30)

where ϕi(x1), i = 3, · · · , n are any analytic func-
tions of x1 vanishing at the origin.

Note that this model includes the Brockett inte-
grator (Brockett, 1983) as a special case.

Finally, consider dynamic nonholonomic systems
of the form











ẏ = g1(y)v1 + g2(y)v2

v
(r1)
1 = u1

v
(r2)
2 = u2

(31)

where ri ≥ 1, i = 1, 2, and ẏ = g1(y)v1 + g2(y)v2
is either a (high order) chained system (25) or a
generalized power system (27) when view y as the
state and v = [v1, v2]

T as the input.

It can be verified that system (31) is nonregular
feedback linearizable. Moreover, any linearizing
output and singular input functions for system

ẏ = g1(y)v1 + g2(y)v2

are also linearizing output and singular input
function for system (31).

Note that the above model includes the ex-
tended power form (Kolmanovsky,Reyhanoglu &
McClamroch, 1996) as a special case.

3.2 Controller Design

In this subsection, two stabilizing strategies are
outlined for systems which are nonregular feed-
back linearizable. One is based on the classical
linear design theory, the other is based on the
backstepping design technique.

For a nonlinear system

ẋ = f(x) + g1(x)u1 + g2(x)u2 (32)

satisfying Theorem 1 with p(x) = g1(x) and
q(x) = g2(x), suppose h(x) and φ(x) are a lin-
earizing output and the a singular input function,
respectively. Then, by the proof of Theorem 1,
under the state transformation

z = Φ(x) = [h(x), Lf̄h(x), · · · , L
n−1
f̄

h(x)]T (33)

where f̄(x) = f(x) + φ(x)g1(x), and the input
transformation

[

u1
u2

]

=







φ(x)
−Ln

f̄
h(x)

Lg2L
n−1
f̄

h(x)






+





0
1

Lg2L
n−1
f̄

h(x)



w

where w is the new input, system (32) reads as a
linear controllable system in state z and input w

ż = Az + bw (34)

In general, the state and input transformations
are well-defined and smooth in an open and dense
subset Ω0 of the state space , and the Jacobian
matrix of Φ(x) is nonsingular in Ω0.

For linear system (34), the controller design is
standard. Suppose

ω(s) = sn + a0s
n−1 + · · ·+ an−2 + an−1

is a Hurwitz polynomial of s. Then the linear state
feedback

w = −

n
∑

i=1

an−izi (35)

will render system (34) exponentially stable.

For nonlinear system (32), design a pure state
feedback as

[

u1
u2

]

=





φ(x)
1

Lg2L
n−1
f̄

h(x)
(ΓΦ(x)− Ln

f̄
h(x))



 (36)

where Γ = [an−1, · · · , a0].

Let z(t; t0, z0) denote the solution of the closed-
loop system (34) and (35) with initial condition
z(t0) = z0. Similarly, denote x(t; t0, x0) the solu-
tion of the closed-loop system (32) and (36).

Define

Ωz
0 = {z ∈ <n : ∃x ∈ Ω0, s.t. z = Φ(x)}

Ωω(t0) = {x ∈ Ω : z(t; t0,Φ(x)) ∈ Ωz
0, ∀t ≥ t0}

It is readily seen that, if x0 ∈ Ωω(t0), then
z(t; t0,Φ(x0)) ∈ Ωz

0, which implies that the
x(t; t0, x0) is well defined for all t ≥ t0 and con-
verge to the origin asymptotically.

To make system (32) globally attractive, we only
need to drive any initial configuration into the al-
lowed initial set Ωω(t0) by an appropriate control
input, see (Ge, Sun & Lee, 2001b) for a detailed
case study.



Remark 2. Note that the above design procedure
is totally different with the so-caller σ-process
(Astolfi, 1996). In (Astolfi, 1996), first divide the
system into the ‘base’ subsystem and the ‘ex-
tended’ subsystem, and then design the controllers
for each subsystem. Our approach, however, is
based on nonregular feedback linearization of the
whole system, thus it involves no system division.
As the approaches are essentially different, the
resulted controllers differ from each other accord-
ingly.

Now let us turn to the backstepping-based design
for a nonregular feedback linearizable system

ẋ = f(x) + g1(x)u1 + g2(x)u2 (37)

Suppose it satisfies Theorem 1 with p(x) = g1(x)
and q(x) = g2(x), and φ(x) is a singular input
function. Let

u1 = φ(x) (38)

then system (32) is given by

ẋ = f(x) + g1(x)φ(x) + g2(x)u2 (39)

which is feedback linearizable. Hence there is a
state transformation

z = Φ1(x)

such that system (39) in the new coordinate
z processes a triangular structure to which the
backstepping design procedure is applicable.

4. CONCLUSION

In this paper, a new criterion has been presented
for nonregular feedback linearization of a class
of affine nonlinear systems with two inputs. This
criterion was then applied to several classes of
nonholonomic systems and the design issues were
briefly discussed.
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