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Abstract: A key bottleneck in the production of pharmaceuticals is in the formation
of crystals from solution. The control of the crystal size distribution can be critically
important for e�cient downstream operations such as �ltration and drying, and
product e�ectiveness (e.g., bioavailability, tablet stability). This paper provides an
overview of recent developments in the identi�cation of pharmaceutical crystallization
processes. This includes descriptions of recent activities in sensor technologies,
model identi�cation, experimental design, and robustness analysis of pharmaceutical
crystallization processes. Copyright c
2002 IFAC
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1. INTRODUCTION

A key bottleneck in the production of pharma-
ceuticals is in the formation of crystals from so-
lution. For e�cient downstream operations (such
as �ltration and drying) and product e�ectiveness
(e.g., bioavailability, tablet stability), the control
of the crystal size distribution can be critically
important. Also important are the crystal purity
and the crystal shape. The crystal size and shape
a�ect the dissolution rate, which is important in
most pharmaceutical applications. In the phar-
maceutical industry, the relative impact of drug
bene�t versus adverse side e�ects can depend on
the dissolution rate. Control of crystal size and
shape can enable the optimization of the dissolu-
tion rate to maximize the bene�t while minimizing
the side e�ects. Poor control of crystal size and
shape can result in unacceptably long �ltration or
drying times, or in extra processing steps, such
as recrystallization or milling. Purity is especially
important in the food and pharmaceutical indus-
tries, in which the crystals will be consumed.
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Fig. 1. Photograph of paracetamol crystals taken
from a batch crystallizer (paracetamol is the
active ingredient in Tylenol).

Figure 1 shows the variability in crystal shape
that can occur at a single time instance in a
pharmaceutical crystallizer. This particular drug,
paracetamol (also known as acetaminophen), can
have three di�erent crystal morphologies when
grown from a paracetamol-water solution (Finnie
et al., 1999).

The fundamental driving force for crystallization
from solution is the di�erence between the chemi-
cal potential of the supersaturated solution and
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that of the solid crystal face (Kim and Myer-
son, 1996; Mullin and Sohnel, 1977). It is common
to simplify this by representing the nucleation
and growth kinetics in terms of the supersatura-
tion, which is the di�erence between the solute
concentration and the saturated solute concen-
tration. Supersaturation is typically created in
pharmaceutical crystallizers by cooling and/or by
adding a solvent for which the solute has a lower
solubility.

The challenges in the processing of pharmaceuti-
cal crystals are signi�cant. First, there are signif-
icant uncertainties associated with their kinetics.
Part of the di�culty is that the kinetic param-
eters can be highly sensitive to small concentra-
tions of contaminating chemicals, which can result
in kinetic parameters that vary over time. Also,
many pharmaceutical crystals are su�ciently frag-
ile that the crystals break after formation, or the
crystals can agglomerate or have erosion or other
surface e�ects that are di�cult to characterize.
Another signi�cant source of uncertainty in in-
dustrial crystallizers is associated with mixing.
Although crystallization models usually assume
perfect mixing, this assumption is rarely true for
an industrial-scale crystallizer.

Crystallization processes are highly nonlinear,
and are modeled by coupled nonlinear algebraic
integro-partial di�erential equations. The very
large number of crystals is most e�ciently de-
scribed by a distribution (e.g., see Figure 2). For
the case of distribution in shape as well as overall
size, there are at least three independent variables
in the equations. Simulating these equations can
be challenging because the crystal size distribu-
tion can be extremely sharp in practice, and can
span many orders of magnitude in crystal length
scale (0.01 nm to 200 �m) and time scale (20 �s
to 200 min). The short time scales are especially
relevant in impinging jet crystallizers, in which
crystal nuclei are formed directly from solution
under conditions of very high supersaturation.

Another challenge in crystallization is associated
with sensor limitations. The states in a crystallizer
include the temperature, the solution concentra-
tion, and the crystal size and shape distribution.
The solution concentration must be measured
very accurately to specify the nucleation and
growth kinetics. Obtaining an accurate measure-
ment of the full crystal size distribution (CSD)
is even more challenging. Hence it is desirable to
estimate the states from the noisy measurements
that are available.

This paper reviews e�orts towards the control
of pharmaceutical crystallization processes. A de-
scription of the current status of sensor technolo-
gies is followed by a description of an approach
for model identi�cation and experimental design.

Fig. 2. The crystal size distribution for prism-like
crystals with two characteristic length scales
(r1 and r2) and nucleation and growth kinet-
ics identi�ed from laboratory data (Braatz et
al., 2002).

Next, recent advances are discussed in the robust-
ness analysis of nonlinear distributed parameter
systems, focusing on applications to crystalliza-
tion processes.

2. SENSOR TECHNOLOGIES

Measurements of both the solution concentration
and the crystal size distribution are necessary for
e�ective estimation and control.

2.1 Solution Concentration Measurement

The nucleation and growth rates are strongly de-
pendent on the solution concentration, making
its measurement necessary for estimating kinetic
parameters and highly useful for feedback control.
A signi�cant advantage of attenuated total re-

ection (ATR) Fourier transform infrared (FTIR)
spectroscopy over most other methods for solution
concentration measurement is the ability to pro-
vide simultaneous measurement of multiple chem-
ical species. The feasibility of ATR-FTIR spec-
troscopy for the in situ measurement of solution
concentration in dense crystal slurries has been
demonstrated (Dunuwila et al., 1994; Dunuwila
and Berglund, 1997; Lewiner et al., 1999; Lewiner
et al., 2001). In ATR-FTIR spectroscopy, the in-
frared spectrum is characteristic of the vibrational
structure of the substance in immediate contact
with the ATR immersion probe. The crystal of
the ATR probe is selected so that the depth of
penetration of the infrared energy �eld into the
solution is smaller than the liquid phase barrier
between the probe and solid crystal particles.
Hence when the ATR probe is inserted into a
crystal slurry, the substance in immediate contact
with the probe will be the liquid solution of the
slurry with negligible interference from the solid
crystals.
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Fig. 3. ATR-FTIR spectra for paracetamol-water
solution at di�erent concentrations and tem-
perature, in ascending order: 0.010 g/g water
(33�C), 0.015 g/g water (38�C), 0.020 g/g wa-
ter (43�C), 0.025 g/g water (48�C), 0.030 g/g
water (53�C), and 0.035 g/g water (58�C).

The combination of ATR-FTIR spectroscopy with
advanced chemometrics analysis can measure so-
lution concentrations with accuracy as high as
�0:1 wt% in dense crystal slurries (Togkalidou
et al., 2000; Togkalidou et al., 2001b). The ab-
sorbances measured in the mid-infrared range
using ATR-FTIR are usually linearly related to
the solution concentration, so nonlinear chemo-
metrics analysis such as used in near-infrared
spectroscopy (Amrhein et al., 1996) is usually
unnecessary. The ATR-FTIR approach has been
applied to a number of complex pharmaceutical
compounds in academic and industrial laborato-
ries. This includes applications to several poly-
morphic crystal systems with multiple solvents
and solutes at Merck (Togkalidou et al., 2002).
Figures 3 and 4 show the ATR-FTIR spectra and
solubility curve for the paracetamol-water system
(Fujiwara et al., 2002), which is an especially
challenging system due to the relatively low sol-
ubility of paracetamol in water. The reliability
and consistency of this approach are expected to
result in even more applications to pharmaceutical
crystallization processes in future years, both in
academia and industry.

2.2 On-line Crystal Size Distribution Measurement

Our laboratory crystallizer is equipped with a
laser backscattering device and a video micro-
scope which are used to measure the crystal size
distribution in situ. A signi�cant advantage of this
approach is the ability to take measurements in
slurries with high crystal solids density, as occurs
in operations typical of the pharmaceutical indus-
tries.

The laser backscattering approach is based on
inserting a probe directly in the crystallizer, focus-
ing a laser beam forward through a window in the
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Fig. 4. Solubility curve for paracetamol in water
constructed from ATR-FTIR spectroscopy
and advanced chemometrics analysis.
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Fig. 5. Chord length distribution of paracetamol
crystals in water collected from a Lasentec
FBRM M400L.

probe tip, and collecting the laser light scattered
back to the probe. The updated version of the in-
strument, the Lasentec Focused Beam Re
ectance

Measurement (FBRM), has been applied to nu-
merous pharmaceutical crystallizers (Togkalidou
et al., 2001c).

Like any laser-based method applied to a crys-
tal slurry, a transformation is required to relate
the collected laser light to the crystal size dis-
tribution. The FBRM instrument measures the
chord length distribution (e.g., see Figure 5) as
the laser beam emitted from the sensor randomly
crosses two edges of a particle, with this distance
being the chord length. There have been e�orts
to relate the chord length distribution to the
crystal size distribution, both by the Lasentec
company and by some independent researchers
(Ruf et al., 2000; Tadayyon and Rohani, 1998).
This relationship is dependent on a large num-
ber of operating variables, whose e�ects are not
easy to model theoretically, especially for dense
crystal slurries (Monnier et al., 1996; Monnier et
al., 1997). Chemometrics methods have been used
to relate the chord length distribution to the crys-
tal size distribution (Togkalidou et al., 2001a) and
to other variables such as the �ltration resistance
(Johnson et al., 1997; Togkalidou et al., 2001c).



A weakness of the laser backscattering and re-
lated laser-based sensors is that the distribution of
crystal shape cannot be directly determined. For
example, a collection of rod-like crystals are char-
acterized mathematically by a two-dimensional
distribution (one dimension being the length,
and the other dimension being the breadth),
but the light scattering instruments only provide
one-dimensional distributions. It is impossible to
uniquely determine a two-dimensional distribu-
tion from a one-dimensional distribution. The
shape information is averaged out to obtain a one-
dimensional distribution.

An alternative method for measuring the crys-
tal size distribution is through periodic sampling,
video microscopy, and image analysis (Puel et

al., 1997; Rawlings and Patience, 1999). Sampling
can be problematic in an industrial environment.
A commercial instrument that has become avail-
able is the Lasentec Particle and Vision Measure-
ment (PVM) system, in which images of crystals
in solution are obtained using a probe inserted
directly into the dense crystal slurry. This video
microscope can collect 10-30 images a second,
providing two-dimensional snapshots of the crys-
tals in real time. On-line video microscopy can
image crystals as small as 5-15 microns (Pacek
et al., 1994), not as small as obtained by laser
scattering instruments. However, the quality of
the images for most dense crystal slurries limits
the ability of imaging software to automatically
identify individual particles and quantify the char-
acteristics of these particles (e.g., maximum axis,
minimum axis, aspect ratio). An advantage of on-
line video microscopy is the direct observation of
the crystals, which allows shape information to be
obtained. Also, the PVM in particular is a rugged
instrument suitable for use in industrial applica-
tions. The main use of on-line video microscopy
today is for qualitative troubleshooting, with only
some researchers using the images for quantitative
prediction (Baier and Widmer, 2000). Recently,
the on-line estimation of characteristics of the
crystal shape distribution has been demonstrated,
using a combination of the PVM, the FBRM, and
robust chemometrics (Togkalidou et al., 2001a).
Given the importance of crystal shape in pharma-
ceutical applications, and that progress becomes
easier as computers continue to increase in speed,
the accuracy of such predictions can be expected
to improve in future years.

3. ITERATIVE MODEL IDENTIFICATION
AND EXPERIMENTAL DESIGN

In the past two years iterative model identi�ca-
tion and experimental design has been applied
to several crystallization processes, including for
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Fig. 6. Iterative model identi�cation and experi-
mental design

crystals with di�erent rates along di�erent growth
axes (Gunawan et al., 2002). Our approach is
similar to approaches used for linear lumped pa-
rameter systems, except generalized to the non-
linear distributed parameter equations needed to
model pharmaceutical crystallizers (see Figure 6).
A model selection step (not shown in the �gure)
is used to select among di�erent model structures,
which correspond to di�erent nucleation and/or
growth mechanisms.

The overall closed loop crystal product quality
can be used as the objective of the experimental
design (Ma and Braatz, 2002), instead of the com-
monly used D-optimal experimental design objec-
tive (Box et al., 1978; Miller and Rawlings, 1994),
which focuses on the uncertainty in the model pa-
rameters. Experimental design variables that have
been optimized between each batch experiment
include the temperature pro�le, antisolvent addi-
tion rates, and various characteristics of the seed
distribution (Chung et al., 2000). Accurate model
parameters are typically obtained with as few
as four batch crystallization experiments. A typ-
ical comparison between model predictions and
measurements are shown in Figure 7, where the
moments �10 and �01 are closely related to the
average length and width of rod-like crystals in the
slurry. The moments were computed by weighted
normalization of the FBRM data (Tadayyon and
Rohani, 1998). We have applied this approach to
several pharmaceutical crystallization processes,
including to the crystallization of paracetamol
(Fujiwara et al., 2002). It is expected that it will
become increasingly common for pharmaceutical
companies to identify models for use in scaling up
the crystallization process.
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Fig. 7. (top) The measured solution concentra-
tions for two experiments and (bottom) the
measured moments (�10 and �01) in the sec-
ond experiment along with the model predic-
tions (solid lines).

4. ROBUSTNESS ANALYSIS

Crystallization processes can have a very high
sensitivity to model parameter variations (Ma et

al., 1999a). The iterative model identi�cation and
experimental design procedure relies heavily on
the ability to quantify the e�ect of model uncer-
tainties on the crystal product quality. We devel-
oped an approach to quantify the impact of such
variations on the product quality without exhaus-
tive simulation of all possible process conditions
(Ma et al., 1999b; Ma and Braatz, 2001). The
approach is applicable to �nite-time nonlinear dis-
tributed parameter systems. The knowledge of the
worst-case model parameters are used to deter-
mine where experimental e�ort should be focused
to improve model accuracy.

Robustness analysis with regard to control im-
plementation uncertainties can guide the selec-
tion of the control instrumentation, by deter-
mining where high precision sensing and actua-
tion are required. The computation of the worst-
case external disturbances determines which dis-
turbances signi�cantly a�ect the product qual-
ity. This robustness analysis has been applied to
several batch crystallizers, both in simulations
and in experiments (Ma et al., 1999a; Ma and
Braatz, 2002). Robustness estimates are provided
with reasonable computational requirements.

5. CONCLUSION

The pharmaceuticals industry is continuing to
grow faster than most other industries, and most
pharmaceuticals must undergo multiple crystal-
lization steps before arriving at the �nal product.
Advances in measurement technologies are remov-
ing the main bottleneck that limited progress in
the 1970s-1980s.

Model identi�cation and experimental design al-
gorithms are being applied to pharmaceutical
crystallization processes. Pharmaceutical crystal-
lization processes have all the characteristics that
make an interesting control problem|partial dif-
ferential equations, nonlinear dynamics, signi�-
cant uncertainties, unmeasured state variables,
signi�cant disturbances, sensor noise, etc. Crys-
tallization processes pose a rich array of control
problems that are expected to keep control engi-
neers engaged for some time.
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