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Abstract: This paper is endeavored to motivate the use and further research of dissipative
and passive discrete-time systems exploiting their frequency-domain characteristics.
Some important features and implications of the dissipativity property in the discrete-
time setting are collected. These properties are mainly referred to the stability analysis
(feedback stability systems and study of the zero dynamics), the relative degree, and
the preservation of passivity under feedback and parallel interconnections. Dissipativity
frequency-domain properties are related to some of the most important frequency-domain

stability criteria.
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1. INTRODUCTION

Dissipativity and its particular case of passivity were
born from the observation of physical systems be-
havior. They are the formalization of physical energy
processes. Passivity ideas emerged in the circuit the-
ory field, from the phenomenon of dissipation of en-
ergy across resistors. The abstraction of the connec-
tions between input-output behavior, internal system
description and properties of energy functions is the
basis for dissipative systems. Precisely, due to the fact
that dissipativity merges all these concepts, it acts as a
powerful tool for analyzing systems behavior.

Dissipativity and passivity implications in dynamical
continuous-time systems have been broadly studied.
Nevertheless, a lot of problems concerning dissipativ-
ity and passivity in the discrete-time setting remain
unsolved, or they have not attracted as significant at-
tention as in the continuous-time case. This is the case
of the study of the interconnection of passive discrete-

time systems or the study of the implications of dis-
sipativity and passivity in the relative degree and the
zero dynamics of discrete dynamics.

One of the most important passivity results is that
a negative feedback loop consisting of two passive
systems is passive. In addition, under an additional
detectability condition, this feedback system is also
stable. This result is well known for continuous-time
systems (Sepulchre et al., 1973), but it has not been
broadly exploited for the discrete-time case. Passiv-
ity and dissipativity properties have been used in the
framework of interconnected discrete-time systems
for stability analysis purposes, see for example, (Wu
and Desoer, 1970; Desoer and Vidyasagar, 1975).
However, the study of passivity preservation under
block interconnection has aroused less attention in
the discrete-time setting. In the seminal work (Popov,
1973), among other things, the interconnection of pas-
sive systems is studied by means of the introduction
of the concept of hyperstability, that is, a closed-loop



system consisting of a linear system with a nonlinear
block in the feedback path is hyperstable when the
nonlinear block satisfies a passivity-like characteristic
and the linear block is positive real. This result is
given either for the discrete-time or the continuous-
time case.

The study of the properties of the relative degree and
the zero dynamics of a passive system has played
an important role in understanding problems such as
feedback passivity or the stabilization of passive sys-
tems in the continuous-time setting, see (Byrnes et
al., 1991). For general discrete-time systems, the im-
plications of dissipativity and passivity in the relative
degree and the zero dynamics have not been estab-
lished yet, these ones have only been studied for the
losslessness case, see (Byrnes and Lin, 1994).

This paper exploits dissipativity and passivity con-
cepts in discrete-time systems. Passivity preservation
under block interconnection is studied. Furthermore,
the relative degree and the zero dynamics of passive
linear discrete-time systems are analyzed. In addition,
the frequency-domain characteristics of dissipativity
are related to some frequency-based nonlinear feed-
back stability criteria in the discrete-time domain.

The paper is organized as follows. Section (2) revisits
the most commonly used definitions for dissipativity
in the discrete-time setting in addition to its frequency-
domain characteristics, wich will be used in the se-
quel. Section (3) is devoted to the study of the inter-
connection of passive discrete-time systems. Section
(4) presents the special properties that the relative de-
gree and the zero dynamics of passive discrete-time
systems have. Section (5) proposes and conjectures
dissipativity to be the key for analyzing the frequency
properties of nonlinear discrete-time systems. Conclu-
sions are given in the last section.

2. DEFINITIONS AND FREQUENCY-DOMAIN
CHARACTERISTICS

Dissipativity can be formalized from two different
points of view: considering the input-output descrip-
tion of the system via an operator on a function space
or via the state-space or internal dynamical repre-
sentation. The former endows the frequency-domain
characterization of dissipativity; for the discrete-time
case, see for example (Wu and Desoer, 1970; Popov,
1973; Goodwin and Sin, 1984). The latter interprets
dissipativity by means of an energy balance equation;
for the discrete-time case, see for example (Byrnes and
Lin, 1994) and (Sengtr, 1995).

The frequency-domain interpretation of passivity for
linear systems is given by means of the positive real-
ness property of a transfer function. Passivity is equiv-
alent to positive realness, see for the discrete-time case
(Hitz and Anderson, 1969). The concept of positive
real tranfer functions is originated in the continuous-

time setting in network theory as the frequency-
domain formulation of the fact that the time inte-
gral of the energy input to a passive network must
be positive, in other words, a linear time-invariant
passive circuit, having positive resistance, inductance,
and capacitance values, has a positive real impedance
function. This property can be easily identified via the
Nyquist diagram of the associated transfer function of
the system, which is confined in the right-hand side
half of the Nyquist plane. In addition, positive real
transfer functions do not have poles with modulus
greater than one, and their poles lying on |z| =1 are
simple with positive real residues. These features will
be used in the sequel.

The state-space formalization of dissipativity and pas-
sivity associates to the system a non-negative definite
storage function V and a supply function s. Let the
system,

x(k+1) = f(x(k),u(k), xe 2, uew (1)
y(k) =h(x(k),u(k)), y € # @)

where f : 2 x% - Z and h: X X% — % are
smooth maps, with 2" c 0", %, % c 0™k € &, =
{0,1,2,...}.

Definition 1. (Byrnes and Lin, 1994) System (1)-(2)
with supply rate s : & x % — [ is said to be dissipa-
tive if there exists a positive definite functionV : 2" —
07+, V(0) =0, called the storage function, such that

V(x(k+1)) =V (x(k)) <s(y(k),u(k)),
V(x(k),u(k)) € 2" x %, VK 3)

Definition 2. System (1)-(2) is said to be passive
if it is dissipative with respect to the supply rate
s(y(k),u(k)) =y (k)u(k).

In the linear case, the relation between the input-
output and the state-space representations of passivity
properties is given by the Kalman-Yakubovich-Popov
(KYP) lemma, which is proposed for the discrete-time
setting in (Hitz and Anderson, 1969), and is obtained
from the continuous-time result via a bilinear transfor-
mation. The generalized version of the KYP lemma,
also called Discrete Positive Real lemma, for the dis-
sipativity discrete-time case is given in (Goodwin and
Sin, 1984) for supply functions of the form:

s(y,u) =y Qy+2y"Su+u'Ru, (4)

where Q, S, R are appropriately dimensioned matrices,
with Q and R symmetric.

Lemma 3. (Goodwin and Sin, 1984) Let G(z) a trans-
fer function description, and M(z) = R+ GH(2)S +
STG(z) + G"(2)QG(z), with GH(z) denoting the her-
mitian transpose of G(z). Let



x(k+ 1) = Ax(k) + Bu(k),
y(k) = Cx(k) +Du(k) 5)
a minimal realization of G(z). Then Vzst. |z| > 1,
M(z) > 0 if and only if there exist a real symmetric

positive definite matrix P and real matrices L and W
such that

ATPA—P=CTQC-L"L (6)
ATPB=CTQD+C'S—LW (7)
B'PB=R+D'S+S'"D+D'QD-WTW

C))

Conditions (6)-(8) can be considered as the charac-
terization of dissipativeness, Definition (1), for stor-
age functions of the form V = 2xT (k)Px(k), with P a
positive definite symmetric matrix, and supply func-
tions given in (4). Special cases of dissipativeness can
be derived choosing different values for Q, S and R
(Goodwin and Sin, 1984):

AT 1
(1) Passivity: Q=R=0,S= 5l

(2) Input strict passivity (ISP): Q =0, S= 3I,R =
—el

(3) Output strict passivity (OSP): Q = —4l, S = 1l,
R=0

(4) Very strict passivity (VSP): Q = —4l, S = 3l,
R=—¢l

(5) Finite gain stable (FGS): Q = —1,S=0,R=K?2I,

with € and & small positive scalars, | the identity
matrix and k an arbitrary constant.

3. IMPLICATIONS OF PASSIVITY IN
INTERCONNECTED SYSTEMS

The purpose of this section is to show an alternative
way in studying whether the feedback and the parallel
interconnections (given in Figure (1)) of two discrete-
time passive systems result in a passive system. It is
inspired by the continuous results given in (Sepulchre
etal., 1973).
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Fig. 1. (i) Feedback interconnection, (ii) Parallel inter-
connection.

Theorem 4. Consider the systems G, and G,, (linear or
nonlinear) to be passive. Then, the systems resulting

from the feedback and the parallel interconnections of
systems G, and G, are passive.

Proof Let x, states of G,, and x, states of G,,. Taking
into account the dissipativity definition (1), and partic-
ularizing it for the passivity case, i.e., s(y,u) = y'u, it
is concluded that if G, and G, are passive, then there
exist two storage functions V,(x;) and V,(x,), such
that

Vi (X (k+1)) = Vy(xy (K)) < yluy ©)
Vo(Xp(k+1)) =Vo(x(K)) <yzu,  (10)
A new state vector is defined as x := (x;,X,), which

will be the new state vector for the interconnected
system, and a new positive definite storage function
V is also considered

V(x) :=Vy(xq) + V(%) (11)

For the feedback interconnection (i), one has

V (x(k+1)) =V (x(K) <yiu; +Y3u,

Taking into account that u, =y,, u; =r —Yy,, it follows
thatyl (r—v,) +yJy, =yl r. Consequently,
V(x(k+1)) =V(x(k)) <yir,

that is, the feedback interconnected system is passive.

For the parallel interconnection, the output of the
systemisy; +y, =Y. If G; and G, are passive,

V; (g (k+ 1)) = Vs (%, () < yju (12)
Vy(xa(k+1)) = V,(xy(K)) <y3u (13)
Adding (12) and (13), it is obtained
V(x(k+1)) =V (x(K) < (y, +¥p)Tu=y"u,

i.e., the system corresponding to the parallel intercon-
nection is passive.

Remark 5. Following the same procedure, it can be
easily checked that the property of OSP for supply
functions of the form (4) is preserved under feedback
block interconnection. Besides, ISP is preserved under
parallel interconnection.

3.1 Interconnection of passive linear discrete-time
systems: An example.

For single-input single-output linear dynamics, a way
of illustrating that the feedback and parallel intercon-
nections of two passive systems result in a passive
system is by means of the positive realness property
of the transfer function of the interconnected resulting
systems.



An example is considered. A discretized normalized
model of the buck converter (Kassakian et al., 1991),
proved to be passive with respect to the current output
in the continuous-time setting, it will be connected to
itself by means of a negative feedback and a parallel
interconnection. The discretization scheme used will
be the trapezoidal or bilinear transformation, shown to
preserve passivity under sampling in linear systems,
see (Tsai, 1996). The continuous transfer function
having the current through the inductor as the output,
with a normalized load of R, = 0.3536, takes the form:

s+0.3536

Ge(s) = 20990
o8) = 210353651 1

(14)
Applying the trapezoidal transformation on system
(14) and choosing the sampling period time T =

0.35355, the following positive real transfer function
in z is obtained:

_0.17173(z+1)(z— 0.8823)

&=z 17717+ 0.8857 (15)

The Nyquist diagrams for the feedback and parallel
interconnections of (15) are presented in Figure (2).
They both correspond to positive real transfer func-
tions or to passive systems.
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Fig. 2. (i) Nyquist plot for the feedback interconnec-
tion of (15), (ii) Nyquist plot for the parallel in-
terconnection of (15).

4. IMPLICATIONS OF DISSIPATIVITY AND
PASSIVITY IN THE RELATIVE DEGREE AND
THE ZERO DYNAMICS OF A SYSTEM

The characteristics of the relative degree and the zero-
dynamics of passive linear discrete-time systems will
be analyzed. These properties give a valuable informa-
tion of the relation between the input and the output of
the system. As passivity property is an input-output
property, the relative degree and zero dynamics of a
passive system will present distinctive features.

The basis of our analysis will be the dissipativity con-
ditions given in (6)-(8) particularized for the passivity
case.

Proposition 6. (Hitz and Anderson, 1969) Suppose
the storage function of the formV = %XT Px, with P

a positive definite and symmetric matrix. A system of
the form (5) is passive with respect to V, if and only
if, there exists P such that

ATPA—P<0 (16)
BTPA=C (17)
B'PB—(D'+D)<0 (18)

Proposition 7. If system (5) is passive, then it has
relative degree zero.

Proof Having relative degree zero is equivalent to
D # 0, i.e., the output depends directly on the input.
From condition (18), with P a positive definite matrix,
one concludes that BT PB is a positive definite matrix,
consequently DT + D must be a positive definite ma-
trix, and therefore D # 0.

Remark 8. This result is not new, see (Byrnes and
Lin, 1994).

Remark 9. In (Byrnes and Lin, 1994), it is stated
that it does not make sense to study passivity and
losslessness of discrete-time systems having outputs
independent of u. This is the case for s(y,u) = y'u.
Indeed, dissipative systems can have relative degree
greater than zero, that is, D can be zero. For example,
considering dissipative systems with supply functions
of the form (4), it can be concluded that ISP, VSP and
FGS systems may have relative degree greater than
zero.

If system (5) has relative degree zero, its zero dynam-
ics takes the following form

*(x(k)) = (A—BD~XC)x(k) (19)

Definition 10. A system of the form (5) has locally
passive zero dynamics, if there exists a positive def-
inite function V, locally defined on the neighborhood
Z ofx=0in 0", V(0) =0, such that

V(F* (X)) <V (X), Yx€ 2

Remark 11. A passive zero dynamics is a Lyapunov
stable dynamics, also referred as weakly minimum
phase dynamics, denomination proposed in (Byrnes et
al., 1991).

Proposition 12. Let a system of the form (5) be pas-
sive with a storage functionV as defined above. Then,
its zero dynamics is locally passive.

Proof Since system (5) is assumed to be passive,
there exists P a positive definite and symmetric matrix
satisfying equations (16)-(18). Consider V = 3xTPx.
The zero dynamics of the system is given by (19), then
V(*(x)) =V (x) = 2xTMx, where



M= (A-BD™C)TP(A-BD"C)-P (20)

Thus, it is needed to be proved that M is negative semi-
definite. Considering condition (17), M can be written
as follows

M=(ATPA-P)-CT[D '+ (D HT]C+
+CcT(dpH'B"PBD IC (21)

Adding and substracting to (21) CT(D~H)T(DT +
D)D~C =CT[D~*+ (DY) T|C, and using (16) and
(18), it is concluded that M is negative semi-definite.

Remark 13. The properties of the relative degree zero
and passive zero dynamics shown for linear discrete-
time passive systems are accomplished by the passive
or positive real transfer function (15) and its feedback
and parallel interconnections proved to be passive in
Section (3). It is interesting to notice that continuous-
time passive systems present relative degree one (see
(14)), while discrete-time passive systems have rela-
tive degree zero, see (15).

5. IMPLICATIONS OF DISSIPATIVITY AND
PASSIVITY IN FEEDBACK SYSTEMS
STABILITY

The study of stability of nonlinear systems using fre-
quency criteria instead of Lyapunov’s direct method
has been proposed for linear systems with a non-
linearity in the feedback path. These methods, mainly,
Popov’s, Tsypkin’s and the circle criteria establish
stability criteria based upon the frequency response of
the linear part. It is proposed (Popov, 1973) that if the
transfer function corresponding to the linear block is
positive real or passive and the non-linearity satisfies a
Popov-like inequality, i.e., it is a sector bounded non-
linear function, then the resulting closed-loop system
is said to be absolutely stable (the zero solution of the
system is globally asymptotically stable).

This section tries to present the valuable importance
that dissipativity and passivity concepts have in the
stability analysis of nonlinear interconnected systems.
The most interesting and remarkable property of pas-
sivity is that in linear systems (either discrete or con-
tinuous), the positive realness characteristic is equiv-
alent to the passivity property, and in addition, it
presents highly interesting stability properties in the
frequency domain. The fact of having a Nyquist plot
on the right-half plane, means that an infinite gain
proportional control can be introduced without desta-
bilizing the system.

Since the geometric interpretation of stability crite-
ria such as Popov’s, the circle and Tsypkin’s ones
are based on the positive realness of a transfer func-
tion, and a particular emplacement of the Nyquist
plot, dissipativity formalism can be considered to have

interesting relations with these stability criteria. In-
deed, a passive nonlinear function has the property of
falling in sector [0, ) (Franklin et al., 1990), conse-
quently, the passivity property increases the validity of
Popov’s, the circle and Tsypkin’s criteria. If a sector
bounded non-linearity is passive, its sector boundaries
are augmented in comparison to the boundaries pro-
posed in the mentioned stability criteria.

In (Goodwin and Sin, 1984), the generalized KYP or
Discrete Positive Real Lemma is proposed for dissipa-
tive discrete-time linear systems with supply function
(4), see Lemma (3). In addition, the characteristics
of the Nyquist plot of G(el®) for single-input single-
output systems are presented depending on the form of
the supply function. Two cases are analyzed: Q being
negative definite and Q = 0. On the one hand, if Q < 0,
the Nyquist plot of G(el®) lies inside the circle with
center S/ | Q| and radius (1/ | Q|)\/S2+R|Q]. On
the other hand, if Q = 0, the Nyquist plot of G(el®)
lies to the right (if S > 0) or to the left (if S < 0) of the
vertical line Rez = —R/2S.

From the characteristics of the Nyquist plot of G(el),
dissipativity frequency-domain properties could be
considered as the generalization of the stability con-
ditions of the mentioned criteria for the discrete-time
setting.

Tsypkin’s criterion for nonlinear sampled-data sys-
tems establishes that the closed-loop system consist-
ing of a linear transfer function with a nonlinear func-
tion in the feedback path is absolutely stable if the
nonlinear function falls in a sector bounded by two
straight lines with slopes 0 and b, and the Nyquist
plot of the discrete transfer function lies to the right
of the vertical line Rez = —1/b (Tsai, 1996). Consid-
ering dissipative systems with supply function (4), it is
easy to check that the geometric interpretation of the
Tsypkin’s criterion in the framework of the frequency
domain is a special case of dissipativity with Q = 0,
S=1/2,R=1/b.

The circle criterion gives a sufficient condition for the
absolutely stability of a linear system with a nonlinear
function gain in the feedback path wich falls in a
sector bounded by two straight lines with slopes a
and b. This class of system will be absolutely stable if
the Nyquist plot of the transfer function associated to
the linear block does not intersect a region C defined
by the points (—1/a+ 0j) and (—1/b+j0). In case
a,b # 0 the region C will be a circle. On the other
hand, if a=0,b# 0 or b =0,a # 0, the critical disk
is converted into a critical line which the Nyquist plot
must not cross.

The discrete-time version of the circle criterion is
obtained from the continuous-time result and via the
bilinear transformation, and using z = el®T with T the
sampling period, see (Franklin et al., 1990). Consider-
ing the frequency-domain characteristics of dissipativ-
ity, the conditions that the linear block of the nonlinear



system under consideration must accomplish can be
seen as different classes of dissipativity. For example,
the case of having a = 0,b # 0 corresponds to the
dissipativity case considering the supply function (4)
with Q =0, S=1/2, R = I /b where the Nyquist plot
of the transfer function corresponding to the linear
part lies to the right of the vertical line Rez = —1/b.
The case of having b = 0,a # 0 corresponds to the
dissipativity case considering the supply function (4)
with Q =0, S = —1/2, R = —1/a where the Nyquist
plot of the transfer function corresponding to the linear
part lies to the left of the vertical line Rez = —1/a.
When the critical region corresponds to the interior
or the outside of the circle determined by the points
(—1/a+0j)and (—1/b+ jO), the stability conditions
proposed by the circle criterion may also be obtained
from the dissipativity frequency-domain properties,
considering supply functions of the form (4) with Q
negative definite.

Dissipativity characterization in the frequency domain
can also be used in order to extend Popov’s stabil-
ity criterion to the discrete-time setting, however, a
more complicated analysis than the one made for the
Tsypkin’s and the circle criteria is required; probably,
another kind of supply functions different to (4) are
suspected to be proposed.

6. CONCLUSIONS

Some implications of dissipativity and passivity prop-
erties for the discrete-time case have been presented,
mainly: the preservation of passivity under feedback
and parallel interconnections, the study of the the rel-
ative degree and the zero dynamics of linear discrete-
time passive systems. Dissipativity characterization in
the frequency domain has been used to illustrate the
preservation of passivity under feedback and paral-
lel interconnections by means of an example. The
frequency-domain characteristics of dissipative sys-
tems have also been used to present dissipativity as
an interesting tool for the study of systems stability in
the discrete-time setting, and it can be considered as
the key for obtaining frequency-based stability crite-
ria types, such as: Tsypkin’s, the circle and Popov’s
criteria, for nonlinear discrete-time systems.
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