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Abstract: Bifurcation tailoring is a novel control technique aimed at changing the
entire bifurcation diagram of a given nonlinear system to some desired one. Bifurcation
tailoring was successfully carried out on a second order nonlinear highly manoeuvrable
aircraft model so as to control the angle of attack to an arbitrary prescribed bifurcation
diagram under the variation of elevator. On-line feedforward scheduling was carried
out using a Newton Flow method, and feedback stabilisation was provided by an
adaptive control strategy known as the Minimal Control Synthesis (MCS).

Keywords: Nonlinear aircraft model; Scheduled feedforward control; Adaptive

feedback control

1. INTRODUCTION

The widespread growth in the use of nonlinear
dynamics and bifurcation theory (Strogatz, 1994)
has led to a considerable amount of research into
the nonlinear analysis of complex flight dynamics.
Particularly dynamics at the edge of the flight
envelope, such as high angles of attack, spins
and departures, have received significant amounts
of attention (Thompson et al., 1998; Goman et
al., 2001). The use of nonlinear stabilisation and
control methods have also received a good deal
of interest within aerospace research (Abed and
Lee, 1990; Jahnke and Chen, 1995).

Bifurcation tailoring is a novel technique that al-
lows the aircraft dynamicist to control the aircraft
throughout its flight regime by altering the sys-
tem’s entire bifurcation diagram. This is achieved
by changing the system bifurcation diagram to
some given desired one. Bifurcation tailoring has
been successfully applied to flight models in an
open loop sense, i.e. in an entirely scheduled feed-
forward control guise, where the feedforward sig-

nal was created in an off-line continuation pro-
gram (Lowenberg, 1998). However, in this feed-
forward only configuration the stability or unique-
ness of solution cannot be guaranteed. (Lowenberg
and Richardson, 2001) proposed using the bifur-
cation tailoring to schedule the gains in a feed-
back controller throughout the flight regime: an
improvement over the standard approach of inter-
polating between several calculated gain values at
individual points in the flight regime.

This paper aims to present a process of on-
line bifurcation tailoring where scheduled feed-
forward control is combined with an adaptive
model reference feedback controller known as the
Minimal Control Synthesis (MCS) (Stoten and
Benchoubane, 1990q; Stoten and Benchoubane,
1990b). This will ensure the stability and unique-
ness throughout the desired bifurcation diagram,
and provide the control designer with an oppor-
tunity to control the dynamic response of the
aircraft through the eigenvalues of the reference
model chosen in the MCS controller.



Section 2 covers some background information; an
overview of the bifurcation tailoring theory, an on-
line approach to creating the feedforward signal,
the MCS controller algorithms, and the Hypo-
thetical High angle of Incidence Research Model
(HHIRM) aircraft model used as the application.
Section 3 contains the results and discussion for
the bifurcation tailoring, and section 4 contains
the conclusions and future work.

2. BACKGROUND

A complete background can be found in (Wang et
al., 2001; Charles et al., 2001).

2.1 Bifurcation Tailoring

Consider a continuous time dynamical system
described by

x =f(x,p,q) (1)

where x € R" is the state of the system, p € R
we assume to be a slow varying system parameter
(bifurcation parameter) and q € R is the vector
of all the other system parameters. The bifurcation
tailoring problem is to design a control law q
such that the controlled system has the desired
dynamical behaviour as the parameter p varies
from p, to pp.

Consider the bifurcation tailoring problem where
the desired objective for the controlled system is
to exhibit a branch of equilibria such that, as the
parameter p is varied,

x; = g(p) (2)
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we have that for any given p € [pg, pp] the system
must satisfy the equation:

f(g(p),x11,p,q) = f(g(p),p,2) =0 (4)

The Implicit Function Theorem (Glendinning,
1994) states that if the Jacobian of f w.r.t. =
is invertible, then (4) implicitly defines z as a
function of pi.e.
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Fig. 1. Block diagram of the feedforward sched-
uled bifurcation tailoring.

which means that
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is the desired equilibrium point of the feedforward
open loop system

X = f(X,p, qd(p)) (7)

Hence the desired equilibria defined by (2) is a set
of equilibria in the feedforward system (7). Figure
1 shows the block diagram for this technique.

2.2 Newton Flow

Typically the schedule, q4, may not be found an-
alytically, but can be found off-line by ‘inverting’
the numerical continuation routines in bifurcation
analysis programs such as AUTO (Doedel and
Wang, 1995). In this paper an on-line Newton
Algorithm method was also used:

i [?] fe(®),p(t).2(H) ()

to solve for z. If p = p(t) varies sufficiently slowly,
then z(t) can be found on-line using (8), i.e.
z(t) =z}

2.3 Feedforward Bifurcation Tailoring Limitations

(1) The Newton Flow equation (8) requires a
full, accurate mathematical model to create
the correct qj. Note: this is also true of the
off-line continuation methods (AUTO).

(2) Undesired equilibria may be created in addi-
tion to the desired equilibria.

(3) The stability of the equilibria is not assured.

(4) The equilibrium x}; may not exist for some
value of p = p., in which case there is no
solution for q¥(pe).

Problems 2 and 3 suggest that some sort of feed-
back mechanism would be beneficial. This would
also overcome some inaccuracy in the mathemat-
ical model used to create the feedforward signal
(problem 1). Problem 4 of course is a problem for
any controller using the same control input, q,
and may be seen as, for example, control actuator
saturation. The technique of bifurcation tailoring



can, in fact, bring these limitations to the atten-
tion of the control designer very early in the design
process.

2.4 Feedback Stabilisation

For the bifurcation tailoring applications in this
paper an adaptive model reference controller
known as Minimal Control Synthesis (MCS) was
used. This is an appropriate solution as the con-
troller automatically tunes the gains as the plant
changes throughout the range of p. The control
input is given by:

q(t) = qa(t) + Aq(?) (9)

where qq4(t) is the schedule from the Newton Flow
equation, Aq(t) is the stabilisation control from
the MCS equations:

Aqoz( )=K(t

—aM/YG

Kn(t)=au [ y(rxE0)dr + By (0x5 1)
Ye(t) = Cexc(t) = Ce(xy, — x)

where apr € R, By € R and C, € R™™ are
constants,

+KR() a(t)
dT+;8MYG() T(t)

and where the linear reference model is:

Xm = AmXm + BmX4 (10)

The MCS controller is so useful in this applica-
tion as not only can the stability of the desired
solution be assured (Stoten and Benchoubane,
1990¢; Stoten and Benchoubane, 1990b), but the
dynamic response of the aircraft can be controlled
in the region around the desired solution through
the linear reference model (Landau, 1979). If we
set B,, = —A,, we ensure that z,, = x4 at
equilibrium. Bearing this in mind, inspection of
the MCS equations reveals that, providing the
eigenvalues of A,, have negative real parts, at
equilibrium z = z4. The MCS controller will en-
sure that the system tracks the reference model in
the region around the equilibrium value, allowing
the control designer to place the eigenvalues of the
system throughout the range of p. Figure 2 shows
the block diagram for the feedforward plus MCS
feedback stabilised control.

2.5 Aircraft Model

The aircraft model used in this report is a highly
manoeuvrable non-linear model called the Hypo-
thetical High angle of Incidence Research Model
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Fig. 2. Block diagram for the feedforward, plus
MCS feedback stabilised, scheduled HHIRM
model.

(HHIRM) (Goman et al., 1995), provided by Qine-
tiQ. For this paper the model is used in a second
order form that describes the fast dynamics of the
aircraft (Etkin and Reid, 1996):

where a is the angle of attack, g is the pitch rate,
Z = fz(a,de1, dtp) is the force in the z direction,
X = fx(a,6e1,0sp) is the thrust in the x direction,
M = fu(a,der, 0sp) is the pitching moment, d¢; is
the elevator angle, d;, is the thrust vectoring angle
in the pitching sense; m is the mass (constant), Vr
is the airspeed (constant), g is the acceleration due
to gravity (constant), I, is the moment of inertia
about the pitching axis (constant). We can write
(11) more generally as

[Z] = f(a, ¢, Get, O1p) (12)

This paper contains the results for bifurcation
tailoring applied to the HHIRM model using d,; as
the bifurcation parameter and d;, as the control
input. Since there is only one control input (q =
dtp), i.e. m = 1, there can only be one pre-defined
desired state in x; in equation (2).

3. BIFURCATION TAILORING APPLIED TO
THE HHIRM MODEL

Figure 3 shows the original bifurcation plot for
a vs 0g for the HHIRM model. Figure 4 shows
the HHIRM response under the same conditions
(0p = 0). When a gradual decrease in the el-
evator angle from zero to —25° was applied to
the HHIRM model simulation the angle of attack
gradually increased up to —19.5° (o = 0.59rad =
33.8°) where there was a catastrophic ‘drop’ from
the edge of the fold in figure 3 up to the higher o
branch.

Figure 5 shows the desired bifurcation diagram
for a. This arbitrary shape was chosen because of
its simplicity and for its smooth qualities, hence it
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Fig. 3. Bifurcation plot for the HHIRM with d&;, =
0 (created in AUTO). Solid lines = stable,
dotted lines = unstable.
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Fig. 4. Simulation of the HHIRM model with
0tp = 0 and 6 = —0.001°/sec
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Fig. 5. Desired bifurcation function for the
HHIRM example.
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Fig. 6. The ideal schedule that when applied
to the HHIRM model results in the desired
equilibria (figure 5)

can easily be applied to a bifurcation continuation
program or numerical simulation. Figure 6 shows
the ideal schedule for d;;, created via AUTO, that
when applied to the HHIRM model ensured that
the desired equilibria existed.
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Fig. 7. Schedule produced by the Newton Flow
algorithm. Dashed shows the ideal schedule
created by AUTO. . = —0.001°/sec
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Fig. 8. Simulation of the HHIRM model using the
Newton Flow feedforward schedule (alone).
der = —0.001°/sec

3.1 Feedforward scheduling using the Newton Flow
method

The Newton Flow (NF) algorithm as laid out in
equation 8 was used to supply the feed forward
thrust vectoring to the HHIRM model. Figure 7
shows the schedule that was produced by the NF
equations. It can be noted that the NF schedule is
not quite the same as the (dashed) ideal schedule
that was produced using AUTO. The difference
can be accounted for by the time varying nature
of the NF method. The NF equations solve for
the schedule in real time whereas the off line
numerical method solves for the precise equilib-
rium value in parameter space. The NF equations
therefore require a finite settling time to reach
a steady state solution. In parts of the schedule
where the thrust vectoring is varying quickly over
a relatively short change in the elevator the NF
will not converge to the ideal schedule quickly
enough.

Figure 8 shows the feedforward response of the
HHIRM model when the NF schedule (figure 7)
was used for the thrust vectoring. Figure 9 shows
the AUTO bifurcation plot for the feedforward
scheduled HHIRM using the NF equations. Note
that because AUTO performs continuation on the
equilibria, the bifurcation plot shown in figure
9 is that with the equilibrium values of the NF
schedule, i.e no different to the ideal schedule.
Inspection of figures 8 and 9 shows that the
HHIRM response follows that implied by the bi-



alpha (rads)
o ©
@ >

o
=

-15 -10
elevator (degrees)

Fig. 9. Bifurcation plot created using AUTO for
the feed forward scheduled HHIRM model.

furcation diagram. The stable branch is followed
until around —19.5° where the system ‘dropped’
onto the high a branch. The bifurcation diagram
indicates that for the equilibrium state the NF
equations provide the correct schedule to create
the desired equilibria. However, as stated in sec-
tion 2.3, the desired equilibria are not necessarily
stable or unique throughout the prescribed range
of 651.

3.2 Feedback Stabilisation

The feedback stabilisation was provided by the
MCS algorithm (see section 2.4) in order to sta-
bilise the desired a vs & equilibria in the §, =
—16° to dq = —17° region (see figures 8 and
9). Figure 10a shows the response of the HHIRM
model after the addition of the feedback stabil-
isation. The small control effort required by the
MCS controller can be seen in figure 10b. The
entire range of elevator is now stable and pro-
duces a unique (desired) equilibrium. As the §
lowers (the aircraft moves in a nose up sense), the
response is now to move in a smooth path from
the ‘lower’ branch to the ‘upper’ branch, instead
of the abrupt change in « seen in figures 4 or
8. Moreover, it can be noted that the reference
model in the MCS algorithm (equation 10) allows
the control designer to control some aspects of the
response of the aircraft away from the equilibria.
In effect the eigenvalues of the controlled system
are set via the reference model over the desired
bifurcation diagram equilibria.

The purpose of the MCS stabilisation is also to
ensure the correct bifurcation branch with the
addition of unknowns in the system. This could
be in the form of noise on the output signals,
but in this case was achieved by including some
variation in the pitching moment coefficient over
the range of a. Figure 11a shows that the desired
response is still achieved under these conditions
using the feedforward plus MCS control. It must
be noted that the feedforward control alone would
not achieve the desired equilibria in this case, since
the feedforward schedule was created using the
model with no variations. This is in contrast to
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Fig. 10. Simulation of the HHIRM with feedfor-
ward scheduling and MCS feedback stabilisa-
tion. do; = —0.001°/sec
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Fig. 11. Simulation of the HHIRM (including vari-
ations from the ‘normal’ model) with feedfor-
ward scheduling and MCS feedback stabilisa-
tion. g = —0.001°/sec



section 3.1 (where the model has no variation) in
which the desired equilibria is achieved, but the
stability is not addressed. The difference between
these two situations is indicated in figure 11b by
the additional effort that the MCS controller has
to put in, throughout the range of é.;, in order to
counter the variations in the model.

4. CONCLUSIONS

The practical uses of bifurcation analysis and
nonlinear control in the area of aerospace is al-
ready well known and increasing in popularity.
The novel method of control of nonlinear systems
given by the bifurcation tailoring technique allows
the control designer to entirely change the bifur-
cation diagram of the controlled system. Using
the Newton Flow method avoids the need to use
the cumbersome continuation packages, although
some understanding of the underlying dynamics
of the system is recommended in order to choose
the desired bifurcation diagram. The addition of
the adaptive feedback controller in the guise of the
MCS completes the strategy in terms of stability
and uniqueness of solution and gives the designer
the chance to control the response of the system
around the desired equilibria by selecting the ref-
erence model in the MCS equations.

In the particular highly manoeuvrable aircraft
model used in this paper we have successfully
removed the two folds and unstable region in
the bifurcation diagram and replaced it with a
smooth unique set of equilibria by applying bi-
furcation tailoring as described above. Although
a purely arbitrary bifurcation diagram was se-
lected to demonstrate this process, the power of
bifurcation tailoring is obvious. The authors hope
to explore further the applications of bifurcation
tailoring to the HHIRM aircraft model. Further
work will in particular concentrate on practical
considerations such as noise rejection, actuator
dynamics or computational requirements and the
use of higher order asymmetric incarnations of the
model.
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