
1. INTRODUCTION 
 

There has been a significant research interest in modeling 
of the tire friction dynamics in recent years. This interest 
has been motivated by two observations: (i) the tire 
friction dynamics may be important from the standpoint of 
development of high performance ABS, traction control, 
and vehicle dynamics systems (van Zanten et al., 1989, 
1990), and (ii) numerical difficulties of traditional static 
tire models at low vehicle speeds can be avoided by using 
a dynamic tire model (Bernard and Clover, 1995). 
 
The distributed tire model, developed by van Zanten et al. 
(1989, 1990), captures all important aspects of the tire 
friction dynamics. However, it has a relatively complex, 
multi-state structure, and thus relatively low computing 
efficiency. A more pragmatic tire modeling approach has 
led to the relaxation length-based model (Bernard and 
Clover, 1995; Maurice et al., 1998), which can be 
regarded as a semi-empirical quasi-static lumped model. 
 
Canudas de Wit and Tsiotras (1999) have proposed a new 
dynamic model for longitudinal tire force, which is based 
on the previously developed LuGre dynamic friction 
model. The model combines the advantages of the 
aforementioned dynamic tire models: it is originally 
expressed in the distributed ("brush") form, and it can be 
transformed into a simple lumped form. In addition, it 

includes more accurate tire friction description than the 
brush model proposed by van Zanten et al. (1989, 1990), 
and has a compact form which is convenient for different 
tire dynamics analysis and estimation purposes. 
 
Deur et al. (2000) and Deur (2001a) have modified the 
LuGre tire friction model, in order to provide consistent 
prediction of static tire characteristics. The modified 
model has then been extended for combined longitudinal 
and lateral motion, including calculation of the self 
aligning torque (Deur et al., 2001). The lumped model 
form has been derived based on the idealized assumption 
of uniform normal pressure distribution. However, the use 
of uniform normal pressure distribution has been found to 
be inadequate in view of obtaining accurate self aligning 
torque static curves. That has been motiviation for 
developing a more general lumped tire friction model 
based on a non-uniform normal pressure distribution 
(Deur, 2001b), which is presented in the paper. 
 

2. DISTRIBUTED MODEL 
 
The tire coordinate system, including the main tire model 
quantities, is defined in Fig. 1 (Pacejka and Sharp, 1991). 
The tire friction dynamic behavior has been modeled in 
(Deur et al., 2001) based on the LuGre friction model and 
the following assumptions (cf. (Pacejka and Sharp, 1991; 
Clark, 1981)): 
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Fig. 1. Coordinate system of tire. 
 
 

•  The tire is represented in the region of contact with the 
road with a lot of tiny, massless and elastic bristles 
(so-called brush tire representation). 

•  The camber angle γ is equal to zero. 
•  Variation of the bristle slip speed along the tire/road 

contact length due to turning, camber, and deflection-
variation effects is neglected. 

•  The tire/road contact patch has a rectangular form with 
the length L and width W. 

•  The normal pressure distribution along the lateral (y) 
axis is uniform. 

•  A non-uniform normal pressure distribution along the 
longitudinal (x) axis is incorporated in the model in a 
way which assumes proportional dependence of the 
bristle stiffness to the normal force Fz. 

•  A basic model for self aligning torque, with neglected 
residual torque and carcass compliance effects, is 
considered. 

 
2.1 Dynamic model 
 
The distributed dynamic tire friction model from (Deur et 
al., 2001) is defined by the following set of equations: 
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Eq. (1) describes the bristle horizontal deflection process 
in the longitudinal (x) and lateral (y) directions. The 
model states zx,y(ζ, t) relate to the horizontal deflections of 
a bristle at the position ζ and time t through nonlinear 
functions which correspond to the bristle hysteretic stress-
strain curves (Deur et al., 2000). The relative speeds (slip 
speeds) vr(x,y) are defined as 
 

     αω cosvrvrx −=  , (5) 
 

         αsinvvry =  , (6) 
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The tire/road sliding friction function g is given by 
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Eq. (2) describes the lateral and longitudinal components 
of tire force contribution of a bristle at the position ζ 
(defined per unit area of contact patch), where σ0 and σ1 
are the bristle stiffness and damping coefficients, and σ2 is 
the viscous friction coefficient. This tire force contribution 
is weighted by the normalized normal pressure )(ζp) . 
According to Eqs. (3) and (4), the total longitudinal and 
lateral forces Fx,y, and the self aligning torque Mz are 
obtained by integrating the tire forces and torque 
contributions over the total tire/road contact patch. 
 
An asymmetric trapezoidal normal pressure distribution 
along the longitudinal (x) axis is assumed (Fig. 2, (Deur et 
al., 2001)). The normal pressure function )(ζp)  is given in 
a normalized (non-dimensional) form. Its mean value is 
set to one, so that it relates to the dimensional pressure 
variable p(ζ) as 
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The magnitude mp)  of the normalized normal pressure 
function )(ζp)  is found to be (Deur et al., 2001; Fig. 2): 
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Fig. 2. Asymmetric trapezoidal normal pressure 
distribution. 



 
2.2 Static model 
 

The distributed dynamic tire friction model (1)-(4) has an 
analytical solution for the steady-state conditions. The 
steady-state (static) model relations, which have been 
derived in (Deur et al., 2001), are extended here for the 
case of non-zero viscous friction term σ2vrx,y in Eq. (2): 
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3. LUMPED MODEL 
 

3.1 Lumped model for longitudinal and lateral forces 
 

The lumped model for longitudinal and lateral forces 
(Fx,y-model) is defined in a pair of space-independent 
states )(~

, tz yx , which are obtained by averaging deflection 

variables zx,y(ζ, t) weighted by normalized normal pressure 
distribution )(ζp) : 
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Averaging the distributed Fx,y-model (1)-(3) (by applying 

the integral ∫
L
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lumped state variables definition (17) yields 
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All the terms in the model (18) and (19), except the term 
Sx,y (Eq. (20)), have the lumped forms. The integral 
expression (20) can be solved in the discrete-space 
domain, as shown in Appendix A. The final solution is 
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In order to obtain a lumped model, the terms Sx,y(t) need 
to be approximately expressed as functions of the lumped 
state variables )(~

, tz yx . The simple proportional relation 
between these variables has been proposed in (Deur et al., 
2000, 2001; Deur, 2001): 
 

 )(~)( ,,, tztS yxyxyx κ≈  . (22) 
 

Hence, the state equation (18) assumes the following 
lumped form: 
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The tire static curves (steady-state behavior) of the 
lumped model will be equal to those of the distributed 
model if the variable factors κx,y are used (cf. (Deur et al., 
2001)): 
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Inserting Eq. (12) for the steady-state deflection variable 
space-distribution in Eq. (24), solving the integral 
expressions, and rearranging yields 
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The factors κx,y monotonically decrease with increase of 
the slip speed vr. The boundary values of the factors κx,y 
are found to be 
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For large slip speeds (i.e. in the full-sliding operating 
regime), the factors κx,y tend to zero, and the lumped tire 
friction model given by Eqs. (19) and (23) collapses to the 
standard LuGre friction model (given for a sliding pair). 
This is the correct result, which was not predicted by the 
lumped model with uniform normal pressure distribution 
(where κmin = 1, (Deur, 2001)). However, the both models 
predict the similar results, since in the large slip operating 
regime the second term in the square bracket in Eq. (23) 
(so-called convective term) is much smaller (for any κ  ≤ 

1) than the first term in the square bracket. 
 

3.1 Lumped model for self aligning torque 
 

In order to derive a lumped self aligning torque model, an 
additional lumped model state is introduced: 
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Using the definitions (17) and (27), and Eqs. (2) and (15), 
the model output equation (4) is readily transferred to the 
lumped form 
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On the other hand, averaging the distributed model lateral 
(y) state equation (1) (by applying the integral 

∫
L

dp
L

0
2 )((.)2 ζζζ ) ), and taking into account lumped state 

variable definition (27) and Eq. (15) yields 
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Solving the integral expression (30) in the discrete-space 
domain yields (Appendix A): 
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In order to obtain a lumped model, the term S*(t) needs to 
approximately be expressed as a function of the lumped 
model states ψ(t) and )(~ tz y . The following simple linear 
relation between these variables is proposed: 
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Taking into account Eqs. (31) and (33), the self aligning 
torque state equation (29) assumes the following lumped 
form: 
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The following special (basic) case of relation (33) was 
considered in (Deur et al., 2001): 
 

         )()(* ttS λψ≈  . (35) 
 

In this case, in order to provide the correct steady-state 
model behavior, the factor λ is obtained as 
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Inserting Eq. (12) in Eq. (36), solving the integral 
expressions, and rearranging yields 
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The factor λ monotonically decreases with increase of the 
slip speed vr, where the boundary values are found to be 
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In the case of uniform normal pressure distribution (rl = 0, 
rr = 1), the boundary values λmin and λmax take on the 
values 1 and 1.5, respectively. 
 

If the more general relation (33) is used instead of Eq. 
(35), one of the factors λ1 and λ2 can be fixed to an 
arbitrary constant value. It has been shown by simulation, 
that the better results are obtained if the factor λ2 is fixed 
to a constant value, with the factor λ1 calculated to obtain 
the correct steady-state behavior: 
 

 ⋅










+

+−
=

ryvy

ryvy

vKzr
L

vKzr
L

r
L

~2

~)1(2
1

2

2

1
ω

ωλ

ω
λ  

 





−










+

)(
2

)(
00

r

ry

r

ry

vg
v

r
Lvg

v σ
ωλσ

 . (39) 

 
The final lumped tire friction model is given by Eqs. (23), 
(34), (19), and (28). It should be noted that the self 
aligning torque model is of second order for the 
difference of the first-order longitudinal/lateral force 
model (cf. (Maurice et al., 1998)). 



4. MODEL VALIDATION 
 

The developed lumped tire friction model is validated 
with respect to the original distributed LuGre tire model 
(1)-(4). The model parameters are listed in Appendix B. 
They have been obtained by optimization with respect to 
Pacejka static tire model (Deur et al., 2001). 
 
Fig. 3 shows comparative responses of the lumped and 
distributed LuGre tire models to a series of slip angle 
steps during pure cornering, where the basic form of the 
self aligning torque model with λ1 = λ and λ2 = 0 is used. 
Fig. 4 shows the comparative responses for different 
wheel center speeds v. Evidently, the lumped model 
responses preserve all basic characteristics of the original 
distributed model, which include: 

•  A characteristic flexion point of the self aligning 
torque response, which does not appear in the lateral 
force response (note that this difference is due to 
different orders of the Fx,y and Mz-models, Section 3). 

•  A characteristic initial undershoot of the self aligning 
torque response. This effect reveals a non-minimum-
phase nature of the Mz-model. 

•  Slow-down of the model response with decrease of the 
wheel sped. This effect may imply that the tire friction 
dynamics has larger impact to vehicle dynamics at 
lower vehicle speeds. 

 
However, the lumped model response is slower than the 
response of the distributed model, particularly at lower 
slip angles α  (up to 10% slower for Fy and up to 40% 
slower for Mz, according to the results of application of 
the flexion-tangent identification method). It was shown 
in (Deur et al., 2000) that the simple choice of constant 
factor κx,y ≈ 1.2 improved the accuracy of longitudinal 
force dynamic response, but a relatively small steady-state 
error appeared in that case. It can be shown that the 
accuracy of self aligning torque dynamic model can also 
be improved by the choice of a constant factor λ, but the 
steady-state error becomes high in that case. 
 

Fig. 5 illustrates the effects of introducing the factor λ2 ≠ 0 
in the lumped form of self aligning torque model. This 
factor influences the initial delay (equivalent dead-time) 
and initial undershoot of the self aligning torque step 
response. The lumped model with λ2 = 0.2 predicts more 
accurate initial part of the response compared to the basic 
lumped model with λ2 = 0, while the choice λ2 = −0.4 
provides more accurate response settling time (cf. Figs. 5 
and 3). 
 

5. CONCLUSION 
 

The lumped dynamic tire friction model proposed in 
(Deur et al., 2001) has been extended for the more general 
case of a non-uniform distribution of the normal pressure. 
The main advantage of the extended model is that it is 
capable to predict a correct steady-state behavior of the 
self aligning torque. 
 
The lumped model validation has shown that the model 
preserves all the basic characteristics of the original 
distributed model. However, the pure cornering step 
response of the lumped model compared to the distributed 

one is somewhat slower, particularly for low slip angles. 
Influence of this discrepancy to the dynamic error of 
overall vehicle dynamics/steering system simulation, as 
well as an experimental model validation, is planned to be 
addressed in future work. 
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Fig. 3. Comparative pure cornering step responses of 
distributed and lumped tire models (λ2 = 0). 
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Fig. 4. Comparative pure cornering step responses for 
different wheel center speeds (α: 0→1o at 0.05 s). 
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Fig. 5. Comparative pure cornering step responses for 
different factors λ2. 
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APPENDIX A. Derivation of terms Sx,y and S 
 

A.1 Term Sx,y 
 

The term Sx,y, given by Eq. (20), can be rewritten in the 
discrete-space domain as (N - number of bristles; Fig. 2): 
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Rearranging the above equation for Sx,y yields 
 














−
−

−
= ∑∑

−

=

−

=
∞→

1

1
,

1

,, 1
11lim

l

r

N

i
yix

l

N

Ni
yix

rNmyx z
N

z
NN

pS )  , 

 

which can be rewritten in the continuous-space domain as 
Eq. (21). 
 
A.2 Term S 
 

The term S, given by Eq. (30), can be rewritten in the 
discrete-space domain as (Fig. 2): 
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Taking into account the discrete-space form of the lumped 
model state yz~  (cf. Eq. (17)) 
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the above equation for the term S can be rearranged to 
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The above equation for S* can be transformed to the 
continuous-space domain as Eq. (32). 
 

APPENDIX B. Parameters of tire friction model 
Fz = 4000 N,  Lσ0x = 314⋅103

 N, Lσ0y = 159.2⋅103
 N,  σ1= 0 , σ2 = 0,  

L = 0.303 m,  FC /Fz= 0.648,  FS/Fz = 1.671,  vs = 3.49 m/s,  δs = 0.6,  
rl = 0.134,  rr = 0.707,  N = 51,   v = 60 km/h. 


