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Abstract: This paper focuses on the asymptotic stability of a class of linear systems in-
cluding multiple (commensurate/uncommensurate) pointwise delays. More precisely,
w e shall ¢ haracterize some stabiljt/instability regions in the delays parameter-space

using a frequency-domain approach.

As potential applications, we shall discuss the robustness analysis in terms of delays
of a fluid netw ork appraimation (see, for instance, the models proposed by Izmailov,

1996).©2001 IFA C
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1. INTRODUCTION

The complete characterization of stability regions
for linear delay systems in the parameters space is
still open in the general case (see, e.g. Diekmann
et al, 1995). Furthermore, it was pro ed that the
discrete or pointwise delays case involving uncom-
mensurate delays (rationally independent) is N'P-
har d (Toker and Ozbay, 1996). A different argu-
ment, but with the same conclusion was proposed
by Meinsma et al. (1996) for the stability analysis
of some feedback schemes in the case of small
delays. How eer, the commensurate delays case
can be handled using, for example, matrix pencils
methods (Chen et al., 1994; Niculescu, 1997). A
complete discussion and further comments on the
methodology and algorithms simplification can be
found in Niculescu (2001a).

In the sequel, we shall focus on the asymp-
totic stabilit y analysis of a class of linear dela y
systems involving a ‘combination’ of commen-
surate/uncommensurate delays suggested by oe

of the fluid approximation models proposed in

Izmailov (1995, 1996). More precisely ,w e shall
consider the following second order delay system:

i(t) +kznoaky <t— %r—T) =0, (1)

with the initial condition defined by:

y(e) = ¢(0)v Vo € [_T -7, O]a
gf)EC([—T—T‘,O],R). (2)

The delays 7 and r are rationally independent,
but the model includes commensurate delays in
terms of r. The cases n = 1,2 were considered by
Izmailov (1996) for handling congestion in high-
speed net works: 7 representing the round-trip
time and r some control time-interval. Some issues
on robustness analysis in the delays parameter-
space if n = 1 were proposed in Niculescu (2001b).

The aim of this paper is to analyze the stabilit y
of (1)-(2) in the delays parameter-space Ort. To
the best of the author’s kno wledge,if the scalar
case including tw ouncommensurate delays w as
treated in the 1990s (see the paper of Hale and



Huang, 1993), the second-order system case was
not completely performed, and its characterization
is still open. Some analysis cases can be found in
Freedman and Rao (1986), Stépan (1989), Boese
(1995), to cite only a few.

Note that if there are no delays » = 7 = 0, and
if Y, ar > 0, the system (1) is a second-order
oscillator. Furthermore, if one assumes r # 0, but
7 = 0, we have the closed-loop system of an oscil-
lator with an appropriate output delayed feedback
including commensurate delays and various gains
ar (k = 1,n). The case of a single delay in the
output was already considered in the literature,
and we have seen that the delay may have a
stabilizing effect (see, for instance, Abdallah et al.,
1993, Niculescu and Abdallah, 2000).

Note that the method of Chen et al. (1994) based
on matrix pencils can not be applied directly for
the first delay-interval guaranteeing stability in
the commensurate delays case (r # 0, 7 = 0) since
the system free of delays (r = 7 = 0) is not stable.

In the sequel, we shall use some of the ideas
proposed in Niculescu (1997) (see also Niculescu,
2001a) in the commensurate delays case to char-
acterize the first stability region in the delays
parameter-space if one assumes r and 7 rationally
independent. Furthermore, the methodology pro-
posed here can be extended to more general sys-
tems including commensurate/uncommensurate
delays.

The paper is organized as follows: Section 2 in-
cludes some preliminary results on matrix pen-
cils. Section 3 is devoted to the main results,
and Section 4 to some interpretations in networks
congestion control. Some concluding remarks end
the paper. The notations are standard.

2. PRELIMINARY RESULTS AND
DEFINITIONS

Simple computations allow to rewrite the system
(1)-(2) as follows:

E(t) = anOAkx (t - %r - T) : (3)

where:
0 1 0 0
A0_|:_a00}7‘4k_|:_ak0:|7 k>07
and z = [y y]T.

Introduce now the following matrix pencils A; €
C2n><2n and A2 c cnxn.

1 00
A(z) =2 S +
0 10
0 .0 an
0 -1 0 00 0
+ (4)
0 -1
—Gn —Qp—1 .—a1 0 a1 ... Gp—1
1 00 0 -1 0
A2(z) =2 + , (5)
0 10 0 0 -1
0...0 an a @1 ... Qp—1

where A; was defined using appropriate matrix

tensor products and sums (which generalize the
Kronecker products and sums, with a lower size).
Using the same language as in Niculescu (2001a),
the matrix pencil A; is associated to finite delays
and Ay to infinite delays for the system (3) with
T=0.

Recall the following result from Niculescu (1997,
2001a), valid also in the general case:

Lemma 1. The following statements are true:

1) The complex number z € C*, | z |# 1 is
a generalized eigenvalue of the matrix pencil
A; if and only if 271 is an eigenvalue of A;.

2) All the generalized eigenvalues on the unit
circle of the matrix pencil A, are also eigen-
values on the unit circle for A;.

Consider the original system (1)-(2), and assume
that 7 = 0. Denote o(A) the set of general
eigenvalues of the matrix pencil A. The same
notation will be also used for the eigenvalues of
some real or complex matrix.

Let us assume that r = 7 be a positive value. In
the sequel, one needs to introduce the following
sets:

Qp

>T

Ar g = {(Thi,ah) P Th =
Wi

e 7% € g(A1) — o(A2),

* ok
jwh; E0 <Z Akef+> — {0},
k=0

1<h<2m 1<i<n}, )
e
A;,_:{(rhi,ah): Th; = ho<F
Wh;

e 7% € g(A1) — o(A2),

i .apk
june € o (z Akef+) .
k=0
1<h<2n,1<i<n}. (1)

As seen in Niculescu (1997, 2001a) the set Az 4
allows to characterize the delay values 7p, > T
for which some roots of the associated character-
istic equation cross the imaginary axis. The same



conclusion holds for the set Az _, but with the
difference that 7, < 7.

In other words, if the original system is asymp-
totically stable for the delay value r = 7, then
A7+ and Ar _ will give the upper and respectively
the lower bound on r such that the correspond-
ing delay-interval including 7 will guarantee (nec-
essary and sufficient conditions) the asymptotic
stability of the original system for all delay values
inside the computed interval (Niculescu, 2001a).

If the system is unstable for r = 7 it will be
unstable for all delay values inside the same in-
terval. In such a case, we shall discuss about a
hyperbolicity type property (see, for instance, Hale
et al., 1985 for the delay-independent case or the
matrix pencil characterization in Niculescu, 1997).

Remark 1. The method briefly presented above
can be found in Niculescu (1997) and it extends
the ideas of Chen et al (1994) to handle the stabil-
ity for delay intervals. Furtheremore, the matrix
pencil A; here is 2n x 2n, and the corresponding
matrix pencil in Chen et al. (1994) is 8n x 8n.
Note that a different idea extending the approach
of Kamen (1980, 1982) for delay intervals ro-
bustness analysis can be found in Chiasson and
Abdallah (2001).

3. MAIN RESULTS

Assume that the system free of delays is an
oscillator. The first step is to find conditions
such that there exists sufficiently small delays
guaranteeing the asymptotic stability of (1)-(2).

Proposition 1. (small delays). Assume that

zn:ak >0, zn:k,‘ak <0. (8)
k=0 k=1

Then there exists a sufficiently small positive
value € > 0, such that (1)-(2) with r = ¢ and
7 = 0 is asymptotically stable.

Remark 2. If n = 1, (8) rewrites as ap >| a1 |,
a; < 0, conditions which are satisfied in the
examples proposed by Abdallah et al. (1993),
and Niculescu (2001b). Since for sufficiently small
delays the system becomes stable, we have one
reversal at r = 0.

The next step is to find the wupper bound on
7 guaranteeing the asymptotic stability of (1)-
(2) with 7 > 0 and r = 0. We shall use the
methodology proposed in Niculescu (2001a) and
based on the generalized eigenvalues distribution
of some appropriate matrix pencils defined using
matrix tensor products and sums.

Proposition 2. (generalized eigenvalue distribution).
Let zo € C(0, 1) be a simple generalized eigenvalue
of the matrix pencil A;, which is not eigenvalue
of the pencil Ay, and let (r;0,;0) one of the
corresponding (simple) generated pair in the set
Ao+ for some integer i.

Then:

i) Ifsgn (Z kaycos
k=1

roots of the characteristic equation associ-

ated to (1)-(2) that cross the imaginary axis

from left to right.

kw; ori
M) = +1, there are
n

.. - kwi o7 0 )

ii) If sgn karcos——— | = —1, there are
roots of the characteristic equation associ-
ated to (1)-(2) that cross the imaginary axis
from right to left.

The proof (see Niculescu, 2001c, the full version of
the paper) uses the generalized eigenvalue charac-
terization of the corresponding associated matrix
pencils A;, As> with respect to the unit circle com-
bined with some ideas developed in Cooke and
van den Driessche (1986) concerning the sign of
ds
dr
as the corresponding generated pair are simple,
the sign function should be either positive, either
negative, etc.

|s=jw, - Since the generalized eigenvalue, as well

As we have already seen that at r = 0+, the
system becomes stable, the corresponding value
r = 0 is called delay reversal (see, for instance,
Cooke and van den Driessche (1986) and the
references therein), the next step is to find the
“next” delay value r; > 0 such that the system
changes once again its stability behavior, from
stability to instability this time. This delay value
is known as a delay switch.

Based on the results above, it follows that:
Proposition 3. (First switch). The system (1)-(2)

satisfying the condition (8) is asymptotically sta-
ble for all delay values r:

0<r<ri(ag,...,an),

where

(7,0) € Aot} (9)

Furthermore, if = 0 or r = r1(ag, - -.,an), the
corresponding associated characteristic equation
has at least one pair of roots on the imaginary
axis.

r1(ao, ... a,) =Inf {vy:

Remark 3. Simple computations lead to the fol-
lowing first-delay interval if n = 1, and ag >| a1 |,
a; < 0:



T

Vaot+ | a1 |,

as seen in Abdallah et al. (1993) or Niculescu and
Abdallah (2000).

0<r<ri(ag,a1) =

Using the continuity properties of the roots of
the associated characteristic equation in terms of
delays (see Els’golts’ and Norkin, 1973), a natural
consequence of Proposition 1 is the following:

Corollary 1. (Small delays). If the system (1)-(2)
satisfies the constraints (8), then there exist suffi-
ciently small positive values €1,e2 > 0, such that
the original system with r = &1 and 7 = €2 is
asymptotically stable.

We have the following results (proof in the full
version of the paper):

Proposition 4. (Delay bounds). The system (1)-
(2) satisfying the constraints (8) is asymptotically
stable for all delays r and 7:

0<r<riag,-.-,an)
O<r<7(r)=

wskr ?
n

10
. 1 — S h_ apsineshr (10)
min,, { — -arctan—_
Ws Y ko GkCOS

where w; belongs to the set of positive solutions
of the equation:

3
3
>
|
-

wt = az+2

k=0 k=1 h=0
Furthermore, assume that the chosen delay r and

the solution @, defining the corresponding upper
bound 7(r) in (10) satisfy the condition:

n k-1
1 k—h k — h)w
@2 >z aran( r sin (( )wsr) .(12)
2 n n
k=1 h=0
Then:

i) if 7 = 7(r) + e, with € > 0 sufficiently small,
the system (1)-(2) is unstable.

ii) if the equation (11) has only one positive so-
lution, then there does not exist any 7 > 7(r)
such that the system (1)-(2) is asymptotically
stable.

Remark 4. If one takes n = 1, the Proposition
above recovers the stability result proposed in
Niculescu (2001b).

Remark 5. (Instability). It seems clear that the
same delay interval [0, 7(#)) leads to the instability
of the system (1)-(2) for a given (n + 1)-tuple
(ao, .. .,an) satisfying the constraints (8) if the

original system with r = # > ry(ao,-..,an) and
7 =0 is unstable.
Furthermore, the instability is delay-independent

if the equation (11) has only one positive solution.

Remark 6. (Instability persistence). It is impor-
tant to note that the equation (11) has always
at least one positive solution for w in the set

where

Tpo={i=(i1,...0n) : ir € {1,2},Vk=T,n}

is an appropriate index family, etc.

So, in conclusion, the upper bound on 7 will be
always finite, that is one may expect a sequence of
stability /instability delay intervals in terms of T,
with instability persistence for huge delay values
(see also Niculescu, 2001a), that is there exists a
value 7 such that for all 7 > 7 the corresponding
delay system is unstable.

4. VARIOUS INTERPRETATIONS IN
NETWORKS CONGESTION CONTROL
ROBUSTNESS

Izmailov (1995, 1996) considered the model above
with n = 1 and n = 2 as a feedback control al-
gorithm for data transfer in high-speed networks.
As it was remarked in Niculescu (2001b) in the
case n = 1, decreasing the duration of control-
time intervals (the delay r) is not always the
best solution to improve the performances of the
algorithm in terms of delay robustness.

Indeed, the control-time interval is an important
factor to induce stability or instability in terms of
“large” values of the round-trip time (the delay
7) for the same values of the corresponding gains
(a0, a1 in the case n = 1). Note also that Izmailov
(1996) has choosen ag and a1 having opposite sign,
but the argument was different.

The hypothesis here was to choose the gains such
that the system free of delays is an oscillator.
The same ideas can be applied even in the case
of instability, the only difference beeing the insta-
bility of the original system for small delays since
there are no roots crossing the imaginary axis at
r = 04. Furthermore, in this last case, there exists
gain pairs (ag, a;) for which the system is delays-
independent unstable.

The same ideas hold in the case n = 2, although
it seems that we have more degree-of-freedom in
choosing the gains: ag,a; and as. In fact, im-
proving the performances of the algorithm leads



to important values of the corresponding gains.
Note however some improvement of the system’s
behavior for small delays T, r, but a degradation of
the performances when the delays are increased.

Note that our intention was not to discuss the
algorithm itself, but to point out some of its
limitations in terms of delays, that is some delay-
insensitive measures for the wuncertainty in the
knowledge of the round-trip times. Thus, a natural
consequence of the results above is the following:

Corollary 2. (Stability robustness). The control al-

gorithm defined by the (n + 1)-tuple (ao,...,an,)
satisfying the constraints (8) with the control-
time interval r € (0,71 (ao, - - -, an)) guarantees the
stability of the fluid model if the round-trip delay
T takes any positive value in the interval [0, 7(r)),
where 7(r) is defined in (12).

Remark 7. (Instability persistence). When appro-
aching the congestion phenomenon in actual high-
speed networks, the round-trip times becomes
larger and larger, and it is possible to belong not
to the first delay-interval guaranteeing stability,
but to the next ones in terms of 7 for the same
control-time interval r and the same gains ag,
k = 0,n till the bound 7 discussed in Remark
6 is not reached.

If 7 > 7, the instability of the continuous delay
model above can be interpreted as follows: some
packages will be lost in the data transfer from
some source to some destination using the control
algorithm above for one of the congestion nodes
in the path, ete.

Remark 8. The maximal delay bound 7(r) guar-
anteeing stability can be optimized function of
r € (0,71(ag,-.-,as)), and we shall have a ‘maz-
min’ problem.

Remark 9. Various numerical experiments have
been performed and are included in the full ver-
sion of the paper (Niculescu, 2001c). A simple
case: n = 1, ag = 2, ag = —1.75 was largely
discussed in Niculescu (2001b) including also the
optimization problem cited above.

5. CONCLUDING REMARKS

In this paper, we have considered a second-order

linear system involving commensurate/uncommen-

surate delays, system suggested by some fluid ap-
proximation model encountered in the high-speed
network control congestion analysis.

The characterization of some stability regions in
the delays parameter-space was performed using
the generalized eigenvalues distribution of some
appropriate matrix pencils. The advantage of the

method lies in the possibility to handle more
general systems class.

The derived results allowed various interpreta-
tions in robustness analysis of some congestion
control algorithm in high-speed networks.
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