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Abstract: Subspace identification algorithms are user friendly, numerical fast and stable and
they provide a good consistent estimate of the deterministic part of a system. The weak point
is the stochastic part. The uncertainty on this part is discussed below and methods to reduce

it is derived.
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1. INTRODUCTION

Compared to prediction error and maximum likeli-
hood methods the merits of subspace methods are
robust numerical algorithms which does not require it-
erative minimization. Subspace methods are also easy
to use as the only model structure information needed
is the system order. The drawbacks are lower perfor-
mance in terms of efficiency and also consistency for
the stochastic part.

Recently, consistency for the whole deterministic part
has been established under weak conditions (Bauer
and Jansson, 2000; Knudsen, 2001). Unfortunately,
similar good methods for the stochastic part under
these weak conditions are still missing.

The purpose of this paper is to discuss the above
problems and suggest methods to reduce it whit out
introducing iterative minimization or otherwise spool-
ing the merits of subspace methods. Below, the overall
problem is first stated then the notation and some
necessary basic assumptions are given. Estimation of
the deterministic part are reviewed as this gives the
basis for the following discussion of estimates for the
stochastic part and the uncertainty reducing methods
suggested. These new methods is compared to existing
ones by simulation experiments. Finally a conclusion
is drawn.

2. THE PROBLEM

Subspace identification is used to estimate linear sta-
tionary state space models from experimental input
and output data. The innovation representation of a
state space model is given in definition 1 and is con-
sidered most useful. Below u, € R™ is the input, x, €
R” is the state, y, € R’ is the output and ¢, € R!
is the innovation which are zero mean white noise
with covariance R. The order n is assumed known
or estimated correctly which there is methods for
(Picci, 1997; Sorelius et al., 1997).

Definition 1. (Innovation model).

X1 =Ax, +Bu,+Ke,
Y =Cxp+Duy+ e
E(epeg) = Répq

The problem is then:

Given a series of input output measurements: estimate
all the parameters that is the system matrices A €
R>" B € R C € R¥*# and D € R¥*™ up to within
a similarity transformation and the noise parameters
K e R R € R™ so the covariance of the output is
given by the model.



3. PRELIMINARIES

The basic relation used in the prediction error method
(Ljung, 1999) is the recursive state space model relat-
ing single samples of the signals. One of the principal
new ideas in subspace identification is to combine the
recursive state space model into single linear equa-
tions relating matrices with parameters to matrices
with signals. To do this some definitions are needed.

Definition 2. (Matrices related to signals). The

input block Hankel matrix is divided into two parts
called “past” and “future”, where the dimensions
are U, € R™J U, € R">*J, Based on the output
and innovation there are similar definitions for ¥, €
RixJ, Y, € RM*i,E, e R/ and E, € RA*J, The total
number of samples usedis N =i+h+ j— 1.
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The state matrix X, is defined as a sequence of states
starting from some sample k. Past and future state
matrices are defined by k = 0 and k = i respectively.

R .
Xe £ (% Xegr 7 Fapjoa %y jor) ERTY
X, £ Xy, X, £X,

A column in a matrix e.g. ¥, will be denoted with
lower letters y, and y (k) if the specific column num-
ber is needed. This convention is used for all the signal
related matrices.

Definition 3. (Matrices related to parameter).
The extended observability matrix ', is defined as

C
CA

Y kixn
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CA}C—I

A generic reversed extended controllability matrix €,
is defined below where & and 4 represent system and
input matrices respectively.
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Two lower block triangular Toeplitz matrices H,‘f and
H} corresponding to the deterministic and stochastic
parts respectively are defined below based on the
generic block triangular Toeplitz matrices J%.

H{ £ #,(A,B,C,D)
H} £ #(A,K,C,I)

2 0 -0
CRB 2 0
-0

.}iz(d,.@,‘f,@)é CARB CR
CA TR CA TR - D
Finally the covariance matrix for one column in HE ¢
is needed.

P, & Cov(Hie,) = Hy (1, ® R)(H})T

The basic assumptions needed are listed below. They
are very standard in system identification.

(A,C) is observable 0)

(A,[B K]) is controlable ©

The input u is quasi-stationary (S)

The transfer function from e to y has all @
zeros strictly inside the unit circle

The input 4 and noise e is jointly quasi- o)

stationary and uncorrelated

Assumption (S) ensures that the limits for time aver-
ages involving u exists (Ljung, 1999, def. 2.1). For
these limits the notation E (1) will be used, it re-
duces to E in pure stationary stochastic cases and

lim;_,, % i=1 in pure deterministic cases.

B()2lms BE(@) O

Notice that uncorrelated in assumptions (U) involves a
quasi-stationary signal and is then defined by (2) and
holds for systems operating in open loop.

E(u;,.ef) =0Vr )

4. CONSISTENT ESTIMATE OF THE
DETERMINISTIC PART

The necessary basis for analyzing the estimate of the
stochastic part follows below. It is rather brief, for
details and proofs please refer to (Knudsen, 2001).
There are different theoretical frameworks for sub-
space identification (Verhaegen, 1994; van Overschee
and Moor, 1996; Ljung and McKelvey, 1997; Lari-
more, 1997). However, all frameworks have the focus
on the deterministic part in common.

The overall estimation method chosen here can be
outlined in three steps as follows: First, use the signal
and parameter matrices to establish a linear regression
model. Second, estimate a sufficient number of param-
eter matrices. The choice in this paper is Fh,H;f and
P,. Third, based on these matrices extract the basic
parameters in the model (definition 1).

4.1 Linear regression model

The first matrix equation (3) is derived directly from
the model in definition 1.



d
Yf=I‘th+Hth+H,iEf 3
Unfortunately I', cannot be estimated from this model
because X is not measurable. Therefore X . is related

to measurable signals i.e. input and output as follows
(Knudsen, 2001).

X, = LyY,+LUp+LX,, )
Ly £ €,(A-KC,K),
L,£¥%.(A-KC,B—KD), 5)
L 2 (A—KC)

Inserting (4) in (3) gives (6) which can be written
in a more regression type of way (7) by introducing
definition 4.

Y, =T (LY, + LUp+ L:Xp) + H{U,+ HJE; (6)

Definition 4. (LS parameters and regressors).
©,2T,[L L], 0,2 H,0% [0, 0]

a Y a (Wp
e = [U,,] 2= [Uf

Notice that (7) is a LS regression model in the sense
that the residuals, columns in HE £ is uncorrelated
with the regressors, columns in Z and X,, due to
assumption (U) and ¢, being white noise.

YP
Y, = [[,L, [,L, Hy] gp + T, LXp+ HiE,
s
W, )
£
= [©, 8] [Uf] + Ty LuXp+ HiE,
=OZ+ T, L X, + HiE;

Introduce the LS estimate (8) where Z must have full
row rank.

6=y,z"(zz")™! ®)

Inserting (7) in (8) gives (9) from which the limit in
theorem 1 can be derived.

6=v,2"(zz")™
= (0Z+ T, LX,+HiE,)Z" (zZ")™!
=0+T,LX,Z" (zZ")™!
+HEZT (2Z7)™!

&)

Theorem 1. (Limit for ®). Assuming (S), the input
persistently exciting of order i + /. and (U) then

limwpl® = @+ T, LA & (10)
Jroo
lim wpl [@ @f] [0p O] +T,Le [Ap Af] (1)
Jj—roo
where
limwplX,Z" (zZ") ' =A=[Ap A;]  (12)
je

Ac Rnxi(l+m)+hm

Ap e Rnxi(1+m) , Af e Rnth

4.2 Estimate parameter matrices

The key observations now are: @, is pre-multiplied
by T, and so is the bias in (10) ie. 8, — [,L.
Based on these observations it turns out that I’ can be
consistently estimated under generic conditions using
SVD (13)-(15). The bias on HY can be cancelled by

projecting onto f‘,{ (18) the orthogonal complement
to fh which is found as U, (13).

Theorem 2. (f‘ from @p) Assuming k2 > n, the in-
put persistently exciting of order i+ h and all basic
assumptions (0),(C), (S), (Z) and (U) then Fh and

(I‘,{)TH" are consistent for some limited i; and i >
iy 2> n (16)-(18).

W,0,W, = Usv’T

=[u, U)] [‘S:ql % [Kﬂ S, eR" 13)
T=1,W1=1,W2=(W,,W,,T)% (14)
T,=W'UT,|T|#0,T€R™ (15
lim wpl T}, =T} , i > i (16)
jrmren

A =8¢ (17)
lim wpl(T3)TH = (Th)THY , i>is (18)

ren

Remark 2.1. Notice that ', is not unique but depen-
dent on the users choice where (14) works well.

4.3 Estimating model parameters

After having estimated the system matrices e.g. I,
the model parameters can be estimated by solving the
following equations for the model parameters. The
right hand sides are simply the functional relation
giving in definition 3.

T,=T,4,0), (19)
TH)TH? = (TH)THE(A,B,C,D) (20)

As these equations are over-determined there are many
solutions. A consistent method is shown below.

Theorem 3. (Estimating model parameters). Let
model parameters be estimated by (22)-(24) where
a MATLAB like notation is used and 1 denotes the
More-Penrose pseudo inverse. Assume & > n+ 1, the
input persistently exciting of order i + 4 and all basic
assumptions (O), (C), (S), (Z) and (U) then

A,B,D, and C are consistent

2
for some i and i > i @
C=T,(1:1,1:n) (22)
A=Y, (23)
T¢AT,(1: (h—-1)2),



iy -A—f‘h(l+1:hl,:),

[1:3\1 = argmin
D B.D , 24)
|48 - T H{(A,8,E.D)

Remark 3.1. The minimization in (24) is a LS prob-
lem because the squared term is linear in B, D, and
(24) has a unique solution (in the limit) (Bauer, 1998,
p. 147).

5. ESTIMATING THE STOCHASTIC PART

Following the estimation method in section 4 the
residual covariance estimate P, is calculated (25) and
the parameters K, R is derived based on relation (26)
and the limit for P, derived below in theorem 4.

~ A 1
b= T G mym )
j - o~
k;(yf(k) — ©z(k)) (y; (k) — ©z(K))" (25)
1
T i+ hm+i)
P, =P,(A,CK,R) (26)

(¥, - 6z)(Y, - 62)"

Theorem 4. (Limit for P;;)' Under the assumptions of
theorem 1 the limit for l”;, is

limwpl B, = P, + T,L:P LITE,  (27)

Jj—eo

P, =E(xpx)) ~Blxpe )B(zd") 'Elex;)  (29)

Remark 4.1. The limit for f’h (27) includes pr which
is interpreted as the covariance for the estimation
error %, = xp — £p|z which also decreases with i.
Consequently the convergence for ﬁh with respect to
i is fast due to the three factors L.P; LT all decreasing
to 0 with i.

Proof. According to (7) the residual is given by
v=ys—J¥
=0z+T,Lyx, + Hie, — 6z (29)
= (© - ©)z+ T Lex, + Hie,

If the limiting residual is defined by (30) and the limit
for © (10) is inserted (31) is obtained.

ff £ lim wpl v (30)
Jroo
yf= - thAz+I‘thxp+H,fef 31)

The definition (32) is introduced because if u is
stochastic with mean zero then Az is the optimal es-
timate of x, given z which is denoted £,|z. The last
equality below follows from (12) in theorem 1.

2 xp—Az=x,—E(xp2 )E(zZ) 'z (32)

Using (12) once again the following is obtained.
%, 2 E(%pi])
=E((xp — Az)(xp — A2)T) (33)
=E(xpx,) —Blxpe )E(") " 'Elory)
Now using that (x,,2) and e ¢ are uncorrelated com-
pletes the proof as follows.

E(7,57) = TyLE((xp — A7) (xp — A2)T)
LIT} + HiE(eser ) (H;)T (34)
=T LPy LT} + P,

Comparing the estimation problem for B,D and K,R
revels two important observations. The similarity is
that the bias for ¢ and I?h both lies in im(I, ). How-
ever, the difference is that H,‘f (A,B,C,D) is linear in
B,D while P,(A,C,K,R) is not linear in K. This fact
makes the estimation method for B,D (24) unusable
for K,R.

A first estimation method for K,R which simply ig-
nores the bias is given below. It is only based on the
first block column in P,.

R
CKR
A CAKR | _[ R ]
P(1:hl,1:1)= -
h( ) . [FZKR
CA"2KR
R=P(1:1,1:1) (35)

K=@'P(+1:h,1: R (36)

The second method is based on Cholesky factoring
of P,. Notice that the Cholesky factor of a symmetric
positive definite matrix is unique.

R=GG",
P, =H}(I, @ R)(H})"
= Hy(I,® GG")(H;)"
= Hj(I,® G)(H}(I,® G))"
= #,(A,KG,C,G)#,(A,KG,C,G)T

H#,(A,KG,C,G) =
G 0 -0
CKG G 0
CKG - 0

CAKG

CA"2KG CA" 3kG .- G

With the Cholesky factorization below, K and R can
be estimated by (37)-(40). The LS problem (38) is
completely similar to (24) which is very convenient.

B, = 57 37
[ﬁ} = argmin
G MG . (38)
|(B4)7 5 - (T #,AM,E6)



G* (39)
G! (40)

Q)

R=
I?:

£}

The bias in %, does not lie exactly in im(T},) but
it probably has a large component there due to (27).
Consequently the method does not cancel the bias
term but it is lightly to reduce it.

A number of other approaches have been tried without
success. Increasing i to decrease the bias term in (27)
or using an estimate of L, (5) to estimate K turned
out to give poor performance in tests similar to those
in section 6. The right hand side of (27) has also
been rewritten into a linear function of R, KR, KRK"
and LfoLI, unfortunately a unique solution to this
equation could not be obtained for R and X in this way.

6. NUMERICAL EXAMPLES

The statistical performance of the methods is assessed
by Monte Carlo simulation. Experimental conditions
are 200 replications of 500 samples each. The S/N
ratios is approximately 10 and a suitable excitation
for the input u is used. To compare the results a state
base independent representation i needed. All esti-
mated state space models are therefore transformed
into ARMAX transfer function representation (41).

A(q)y(t) = B(q)u(t) +C(g)e(t) ,

Var(e) £ o2,

Al@21+ag '+ +ag™", (A1)
B(g) & by+big '+ +bug ™",

C(q) —A_ 1 +c1q_l + e +qu_n ]

A first, second and forth order SISO system are tested.
The first order system is used in (van Overschee and
Moor, 1996, sect. 4.4.5) to illustrate these problems
as it has a eigenvalue of A — KC at 0.9996 which
is extremely close to the unit circle. Consequently,
Ly = (A — KC)* (5) decays slowly with i and so does
the bias term for 13,, in (27). The two other, more well
behaved systems are a second order ARMAX and a
forth order BJ system. The corresponding ARMAX
representation are given in table 1.

All the system are tested with the methods in table
2. In this paper it is necessary to chose only one per-
formance measure which is the rms for the parameter
estimation errors (42).

1 ¥
ms; = M;(eﬁ —6,0)° 42)

For easy comparison the results show in figure 1-3
are normalized with the rms for the method tk-chol.
For the first four subspace methods the choice of row
numbers are h = i = 3, 4 and 6 in the three test
systems which are the smallest possible for the subid
and n4sid methods. The fifth n4sid-auto method uses
automatic choice of 4 and i. Therefore it should have a

potentially better performance. Consequently, only the
first four subspace methods are directly comparable.
The last two prediction error methods are included to
give a lower limit for the obtainable rms.

Abb. Method Description
tk subspace  (22)—(24), (35)+36)
tk-chol subspace  (22)(24), (37)~(40)
\ (van Overschee and Moor, 1996, p.
subid subspace 131)
nésid subspace L. Ljung Ident Toolbox
ndsid-auto  subspace L. Ljung Ident Toolbox
pem PEM L. Ljung Ident Toolbox
trftk PEM (Knudsen, 1996)

Table 2. Methods included in the test.

Rms on par. est. relative to tk-chol, VO example

- tk

—— tk-chol

1.4 —— subid

—%— ndsid

1.2} —& n4sid-auto
-~ pem

g tritk

0.8F

0.6

04}

02+

al b0 b1 ci1 s2

Figure 1. Rms on parameter estimates relative to tk-
chol, VO example

Rms on par. est. relative to tk-chol, ARMAX example
4 T T v T T T T ’

al a2 b0 b1 b2 (3] c2 s2

Figure 2. Rms on parameter estimates relative to tk-
chol, ARMAX example. Y-axis truncated.

As uncertainty in the stochastic part is assessed here
the focus is on the parametersc;,...,c, and o2. Based
on rms performance for these parameters in the three
test cases it is clear that the new tk-chol method is
the superior subspace method for the stochastic part
but it can not compete with the best prediction error
method. Notice also that the automatic choice of &
and i in ndsid-auto does not improve performance and
that the tk-chol methods is very much better than the
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Fig. 4. Non-parametric transfer function estimates
at 20 dB input and output SNR with input
signal having more flat spectrum and L =
10. The mean from Monte Carlo simulations
(solid line), the mean + standard deviation
(dotted line) and the true value (dashed line).

L leads to biased estimate of A(g~!), B(¢~!) and
D(q™'). On the other hand, a large choice of L
causes significantly larger computational burden.
One way to chose a reasonably good value of
L is to apply whiteness test, see for example
(Soderstrém and Stoica, 1989), on the estimated
innovation &(t).

7. CONCLUSIONS

Two parametric and one non-parametric algo-
rithm based on a frequency domain approach
for dynamic errors-in-variables system are pro-
posed. The algorithms provide reasonably good
estimates with low computational cost. The para-
metric method described by (11) and (25)-(29)
is computationally economical, because all the
operations involved with it are linear. The non-
parametric method given by (21) is also fast be-

cause of the same reason. The non-paramatric
method is sensitive to noise. Hence it is sometimes
required to modify the non-parametric estimate
using another parametric estimate given by (22).
This modification involves non-linear optimisation
and is computationally expensive.

The accuracy of the parametric method is depen-
dent upon the choice of L. The optimal choice of
L depends upon the the system characteristics.
In general, it is required to have a large L, if
the joint spectrum of the noisy input and output
data is peaky. The non-parametric method is less
sensitive to the choice of L.
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