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1. INTRODUCTION

An important idea in the field of robust control theory
is the use of uncertain system models to represent
no only the nominal behaviour of a system but also
the uncertainty in the dynamic model. An important
class of uncertain system models are those in which
the uncertainty is modelled via an Integral Quadratic
Constraint (IQC). This class of uncertain systems also
allows for the tractable solution to problems of min-
imax optimal guaranteed cost control and set valued
state estimation; e.g., see (Petersen et al., 2000; Pe-
tersen and Savkin, 1999).

This paper considers a problem of characterizing the
set of possible input-output pairs for a given IQC
uncertain system model defined over a finite time
horizon. The solution to this problem allows one to
solve a model validation problem in which it is desired
to determine if a given uncertain system model can
be invalidated by a measured input-output pair. This
process of model validation plays an important role
in the construction of an uncertain system model for
a given physical process in that it enables the uncer-
tainty bound to be set in such a way that the uncertain
system model covers all measured input-output pairs
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and yet is not so large as to lead to excessive conser-
vatism within the uncertain system model.

Uncertain system model validation problems of the
type considered in this paper have previously been
considered in the papers (Savkin and Petersen, 1996;
Savkin and Petersen, 1997). A critical distinction be-
tween the model validation problem considered in this
paper and the model validation problem considered in
the papers (Savkin and Petersen, 1996; Savkin and Pe-
tersen, 1997) is that in this paper, the initial condition
of the uncertain system is assumed to be zero whereas
in the papers (Savkin and Petersen, 1996; Savkin and
Petersen, 1997), the initial condition was assumed to
be unknown but bounded as part of the IQC. This is
important since in many practical finite horizon model
validation experiments, the system is known to be ini-
tially at rest. However, extending the results of (Savkin
and Petersen, 1996; Savkin and Petersen, 1997) to
the case of zero initial conditions introduces a num-
ber of technical problems in that the free endpoint
optimal tracking problems considered in (Savkin and
Petersen, 1996; Savkin and Petersen, 1997) must be
replaced by fixed endpoint optimal tracking problems.

An alternative interpretation of the main result of this
paper is that it provides a behavioural description of
an IQC uncertain system. That is, it describes the set
of possible input-output pairs for the uncertain system.
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This behavioural description of an IQC uncertain sys-
tem has been applied in the papers (Petersen, 2001b;
Petersen, 2001a) to study equivalence relations and
inclusion relations between pairs of uncertain systems.

2. PROBLEM STATEMENT

We consider an uncertain system described by the
state equations on the finite time interval [0, T ]:

ẋ(t) = Ax(t)+B1w(t)+B2u(t); x(0) = 0;

z(t) = Kx(t)+Gu(t);

y(t) =Cx(t)+ v(t) (1)

where x(t) ∈ Rn is the state, w(t) ∈ Rp and v(t) ∈ Rl

are the uncertainty inputs, u(t) ∈ Rh is the control
input, z(t) ∈Rq is the uncertainty output and y(t)∈Rl

is the measured output.

System Uncertainty The uncertainty in the above
system is required to satisfy the following Integral
Quadratic Constraint (IQC). Let d > 0 be a given
constant, and let Q and R be given positive definite
weighting matrices. We will consider uncertainty in-
puts w(·) and v(·) and initial conditions x(0) such that

∫ T

0
[w(t)′Qw(t)+ v(t)′Rv(t)]dt

≤ d +

∫ T

0
‖z(t)‖2dt. (2)

Here ‖ · ‖ denotes the standard Euclidean norm. Fur-
ther discussion concerning this case of uncertain sys-
tems can be found in (Savkin and Petersen, 1995;
Savkin and Petersen, 1996; Savkin and Petersen,
1997; Petersen et al., 2000; Petersen and Savkin,
1999).

Definition 1. Let u0(·) and y0(·) be given vector func-
tions. The input-output pair [u0(·),y0(·)] is said to be
realizable for the uncertain system (1), (2) if there
exist [x(·),w(·),v(·)] satisfying conditions (1), (2) with
u(t) = u0(t) and y(t) = y0(t).

Definition 2. The uncertain system (1), (2) is said
to be verifiable if the set of all realizable pairs
[u0(·),y0(·)] is not whole space L2[0,T ].

Model Validation Problem We will consider the fol-
lowing problem: Given an input-output pair [u0(·),y0(·)],
determine if this pair is realizable for the uncertain
system (1), (2).

3. FIXED ENDPOINT OPTIMAL CONTROL

Our solution to the above model validation problem
involves a certain fixed endpoint optimal control prob-
lem. In this section, we develop a solution to this fixed

endpoint optimal control problem which will be used
in our main result presented in the next section.

We consider a fixed endpoint optimal control problem:

φ(x0) = inf
u

∫ T

0
(x′Qox+u′Rou)dt

subject to

ẋ = Aox+Bou; x(0) = x0 (3)

and x(T ) = 0. It is assumed that Ro > 0 and Qo can
be written Qo = C′

oCo−K ′
oKo. Also, it is assumed that

the pair (Ao,Bo) is controllable.

Our solution to this fixed endpoint optimal control
problem will involve the following Riccati Differential
Equation (RDE) which is solved backwards in time:

Ṗ = AoP+PA′o +PQoP−BoR−1
o B′o;

P(T ) = 0. (4)

Lemma 3. There exists a δ > 0 such that the RDE (4)
has a solution P(t) > 0 on [T − δ ,T ). Furthermore,
P(t) is monotone decreasing on [T −δ ,T ).

The proof of this lemma will be given in the full
version of the paper.

Using the above lemma, we can now define a matrix
function X(t) as follows: X(t) = P(t)−1 for t ∈ [T −
δ ,T ) and for t < T − δ , X(t) is the solution to the
following RDE which is solved backwards in time:

−Ẋ = XAo +A′oX +Qo−XBoR−1
o B′oX ;

X(T −δ ) = P(T −δ )−1
. (5)

If the RDE (5) has no finite escape time on [0,T −δ ],
then X(t) is defined on [0,T ]. If the RDE (5) has a
finite escape time at γ ∈ [0,T −δ ], then X(t) is defined
on (γ ,T ]. Note that it follows from this definition that
X(t) satisfies the RDE (5) over the whole range for
which it is defined. Moreover, the fact that P(t) is
monotone decreasing implies that X(t) is monotone
increasing.

Lemma 4. Suppose that the above fixed endpoint op-
timal control problem is such that φ(x0)≥ 0 for all x0.
Then the RDE (5) does not have a finite escape time
on [0,T ) and φ(x0) = x′0X(0)x0.

The proof of this lemma will be given in the full
version of the paper.

From the above lemmas, we immediately obtain the
following theorem.

Theorem 5. If φ(x0) ≥ 0 for all x0, then the RDE
(4) does not have a finite escape time on (0,T ] and
P(t) > 0 for all t ∈ (0,T ). Furthermore, there exists
an ε̄ > 0 such that the RDE (5) with boundary con-



dition Xε(T ) = I
ε has a solution Xε(t) on [0,T ] and

limε→0 Xε(t) = P(t)−1 > 0 for all t ∈ (0,T ).

4. THE MAIN RESULT

Our solution to the model validation problem of Sec-
tion 2 will be given in terms of the following RDE
which is solved forward in time:

Ṗ = AP+PA′+P[K ′K−C′RC]P

+B1Q−1B′1; P(0) = 0. (6)

Also, our solution to the model validation problem
involves a filter defined by the state equations

˙̂x(t) =
[

A+P(t)[K ′K−C′RC]
]

x̂(t)

+P(t)C′Ry0(t)+ [P(t)K ′G+B2]u0(t);

x̂(0) = 0 (7)

and a quadratic functional defined by

ρ [u0(·),y0(·)]
∆
=

∫ T

0

[

‖(Kx̂(t)+Gu0(t))‖
2

−(Cx̂(t)− y0(t))
′R(Cx̂(t)− y0(t))

]

dt.

(8)

Note that the filter (7) takes the form of a robust
Kalman filter; e.g, see (Petersen and Savkin, 1999).

Theorem 6. Consider the uncertain system (1), (2).
Then the following statements hold:

(i) If the system is verifiable then the solution P(t)
to Riccati equation (6) is defined on the interval
[0,T ) and satisfies P(t)≥ 0 for t ∈ (0,T ).

(ii) Suppose the uncertain system is verifiable and let
u0(t) and y0(t) be given input and output signals.
Then, the pair [u0(·),y0(·)] is realizable if and
only if the quantity ρ [u0(·),y0(·)] defined in (7),
(8) satisfies ρ [u0(·),y0(·)]≥−d.

PROOF. (i) Given an input-output pair [u0(·),y0(·)],
we have by Definition 1 that this pair is realizable
if and only if there exist vector functions x(·),w(·)
and v(·) satisfying (1) and such that the constraint
(2) holds. Now substitution of the equation y0(t) =
C(t)x(t) + v(t) into (2) implies that the pair is real-
izable if and only if there exist a vector xT ∈ Rn and
an uncertainty input w(·) ∈L2[0,T ] such that x(0) = 0
and J[xT ,w(·)] ≤ d. Here J[xT ,w(·)] is defined by

J[xT ,w(·)]
∆
=

∫ T

0

(

w(t)′Qw(t)−‖(Kx(t)+Gu0(t))‖
2

+(y0(t)−Cx(t))′R(y0(t)−Cx(t))

)

dt

(9)

and x(·) is the solution to the state equation

ẋ(t) = Ax(t)+B1w(t)+B2u0(t); x(T ) = xT (10)

with uncertainty input w(·).

Now it follows from Definition 2, that the system
(1), (2) is verifiable if and only if there exists a pair
[u0(·),y0(·)] such that

J[xT ,w(·)] > d > 0 (11)

for all xT ∈Rn and for all w(·) ∈L2[0,T ] such that the
corresponding solution to (10) satisfies x(0) = 0. We
now consider the functional J0[xT ,w(·)] = J[xT ,w(·)]
with u0(·)≡ 0 and y0(·)≡ 0; i.e.,

J0[xT ,w(·)] =
∫ T

0

(

w(t)′Qw(t)−‖(Kx(t)‖2

+x(t)′C′RCx(t)

)

dt.

Then, J0[xT ,w(·)] is a homogeneous quadratic func-
tional of [xT ,w(·)] ∈ Rn × L2[0,T ]. Also, note that
the quantity J[xT ,w(·)] will be a quadratic func-
tion of [xT ,w(·),x0,u0(·),y0(·)]. In particular, for the
given pair [u0(·),y0(·)], J[xT ,w(·)] will be a non-
homogeneous quadratic functional of [xT ,w(·)]. Thus,
if the pair [u0(·),y0(·)] is realizable, then it follows
from (11) that

J[xT ,w(·)]≥ 0

for all [xT ,w(·)] in the following subspace correspond-
ing to the constraint x(0) = 0:







[xT ,w(·)] ∈ Rn×L2[0,T ] :

e−AT xT −

∫ T

0
e−Aτ B1w(τ)dτ = 0







. (12)

Hence, it follows from (11) that the homogeneous part
of this quadratic functional must be non-negative for
all [xT ,w(·)] in the subspace (12). That is

J0[xT ,w(·)] ≥ 0 (13)

for all xT ∈Rn and for all w(·) ∈L2[0,T ] such that the
corresponding solution to the state equation

ẋ(t) = Ax(t)+B1w(t); x(T ) = xT (14)

satisfies x(0) = 0. Given any xT ∈ Rn, we now define
V (xT ) to be the value of the following constrained
optimal control problem:

V (xT )
∆
= inf

w(·)∈L2[0,T ]
J0[xT ,w(·)] (15)

subject to (14) and x(0) = 0. It follows from (13) that
V (xT )≥ 0 for all xT ∈ Rn.

We now apply the Kalman decomposition to the sys-
tem (14). That is, we assume, without loss of general-
ity that the matrices A and B1 can be partitioned as

A =

[

A11 A12
0 A22

]

; B1 =

[

B11
0

]

(16)

where the pair (A11,B11) is controllable. Also, the ma-
trices K, C and the state vector x are correspondingly
partitioned as



K = [K1 K2];

C = [C1 C2];

x =

[

x1
x2

]

. (17)

Now for any xT of the form xT =

[

xT 1
0

]

and for

any w(·) ∈L2[0,T ], the corresponding solution to (14)
satisfies x2(t) ≡ 0. Also, x1(t) is the solution to the
state equation

ẋ1(t) = A11x1(t)+B11w(t); x1(T ) = xT 1. (18)

Hence, the corresponding value of V (xT ) is equal to
the value of the following reduced dimension con-
strained optimal control problem:

V (xT ) = V1(xT 1) = inf
w(·)∈L2[0,T ]

J01[xT 1,w(·)] (19)

subject to (18) and x1(0) = 0. Here

J01[xT1,w(·)] =
∫ T

0

(

w(t)′Qw(t)−‖K1x1(t)‖
2

+x1(t)
′C′

1RC1x1(t)

)

dt. (20)

The constrained optimal control problem (15) can be
regarded as an optimal control problem of the form
considered in Theorem 5 but operating in reverse time.
Hence, using that fact that V1(xT 1) ≥ 0 for all xT 1, it
follows from Theorem 5 that the RDE

Ṗ1 = A11P1 +P1A′11 +P1[K
′
1K1−C′

1RC1]P1

+B11Q−1B′11; P1(0) = 0. (21)

does not have a finite escape time on [0,T ) and P1(t) >

0 for all t ∈ (0,T ). From this it is straightforward to
verify that the matrix

P(t) =

[

P1(t) 0
0 0

]

≥ 0

satisfies the RDE (6) on [0,T). This completes the
proof of (i).

(ii) We showed above that a pair [u0(·),y0(·)] is re-
alizable if and only if there exist a vector xT ∈ Rn

and an uncertainty input w(·) ∈ L2[0,T ] such that
the corresponding solution to (10) satisfies x(0) = 0
and J[xT ,w(·)] ≤ d. For a given pair [u0(·),y0(·)], this
leads us to consider the following reverse-time fixed
endpoint optimal tracking problem:

W (xT )
∆
= inf

w(·)∈L2[0,T ]
J[xT ,w(·)] (22)

subject to (10) and x(0) = 0. Thus, the pair [u0(·),y0(·)]
will be realizable if and only if there exists an xT such
that W (xT )≤ d.

To solve the tracking problem (22), we let x̄(t) be the
solution to the state equation

˙̄x(t) = Ax̄(t)+B2u0(t); x̄(0) = 0

and define x̃(t) = x(t)− x̄(t). Then

˙̃x(t) = Ax̃(t)+B1w(t); x̃(T ) = x̃T (23)

where x̃T = xT − x̄(T ). Also x̃(0) = x(0)− x̄(0) = 0.
Furthermore, the cost function J[xT ,w(·)] can be re-
written in terms of x̃(t) as

J[xT ,w(·)]

= J̃[x̃T ,w(·)]

=

∫ T

0

(

w′Qw−‖K(x̃+ x̄)+Gu0‖
2

+(y0−C(x̃+ x̄))′R(y0−C(x̃+ x̄))

)

dt

Thus, the optimal tracking problem (22) is equivalent
to the following optimal tracking problem

W (xT ) = W̃ (x̃T )
∆
= inf

w(·)∈L2[0,T ]
J̃[x̃T ,w(·)] (24)

subject to (23) and x̃(0) = 0. In this tracking problem,
the vector functions y0(·), u0(·) and x̄(·) are all treated
as reference inputs.

The tracking problem (24) can be simplified by intro-
ducing a state partition as in (16), (17). Then, if we

write x̃ =

[

x̃1
x̃2

]

, it follows from x̃(0) = 0 and (23)

that x̃2(t)≡ 0 and x̃1(t) satisfies the state equation

˙̃x1(t) = A11x̃1(t)+B11w(t); x̃(T ) = x̃T 1. (25)

Thus, x̃T must be of the form x̃T =

[

x̃T 1
0

]

for W̃ (x̃T )

to be finite. For such values of x̃T , we obtain

J̃[x̃T ,w(·)] =

J̃1[x̃T 1,w(·)] =
∫ T

0

[

w′Qw−‖K1x̃1 +Kx̄+Gu0‖
2+

(y0−C1x̃1−Cx̄)′R(y0−C1x̃1−Cx̄).

]

dt

and the optimal tracking problem (24) is equivalent to
the following reduced dimension tracking problem:

W̃ (x̃T ) = W̃1(x̃T 1)
∆
= inf

w(·)∈L2[0,T ]
J̃1[x̃T1,w(·)] (26)

subject to (25) and x̃1(0) = 0. Thus, the pair [u0(·),y0(·)]
will be realizable if and only if there exists an x̃T 1 such
that W̃1(x̃T 1)≤ d.

In the proof of part (i) above, we used Theorem 5 to
conclude that the RDE (21) has a solution P1(t) > 0

on (0,T ). Hence, X1(t)
∆
= P1(t)

−1 satisfies the RDE

−Ẋ1(t) = X1(t)A11 +A′11X1(t)

+X1(t)B11Q−1B′11X1(t)

+K ′
1K1−C′

1RC1 (27)

on (0,T ). Also, it also follows from Theorem 5 that
there exists an ε̄ > 0 such that for all ε ∈ (0, ε̄ ],
the RDE (27) with initial condition X1(0) = I

ε has a
solution X ε

1 (t) on [0,T ]. Furthermore X ε
1 (t)→ X1(t) =

P1(t)
−1 > 0 as ε → 0 for all t ∈ (0,T ). Moreover,



it follows from the continuity of the matrix function
X1(·) that X1(T )≥ 0.

For each of the solutions X ε
1 (t) to RDE (27), we asso-

ciate a corresponding free endpoint optimal tracking
problem:

W̃ ε
1 (x̃T 1)

∆
= inf

w(·)∈L2[0,T ]
J̃ε

1 [x̃T 1,w(·)] (28)

subject to (25). Here

J̃ε
1 [x̃T1,w(·)]

∆
=

‖x̃1(0)‖2

ε
+

∫ T

0

[

w′Qw−‖K1x̃1 +Kx̄+Gu0‖
2+

(y0−C1x̃1−Cx̄)′R(y0−C1x̃1−Cx̄)

]

dt.

Now as in (Savkin and Petersen, 1996), we can write

W̃ ε
1 (x̃T 1) = (x̃T 1− x̂ε

1(T ))′Xε
1 (T )(x̃T 1− x̂ε(T ))

−ρε
1 [u0(·),y0(·)] (29)

where

˙̂x
ε
1(t) =

[

A11 +(X ε
1 (t))−1[K′

1K1−C′
1RC1]

]

x̂ε
1(t)

+(X ε
1 (t))−1[K′

1K−C′
1RC]x̄(t)

+(X ε
1 (t))−1C′

1R(t)y0(t)

+(X ε
1 (t))−1K′

1Gu0(t); x̂ε
1(0) = 0 (30)

and

ρε
1 [u0(·),y0(·)]

∆
=

∫ T

0

[

‖(Kx̄+K1x̂ε
1 +Gu0)‖

2−
(Cx̄+C1x̂ε

1− y0)
′R(Cx̄+C1x̂ε

1− y0)

]

dt;

(31)

see also (Bertsekas and Rhodes, 1971; Lewis, 1995).
Therefore, it follows as in the proof of Theorem II.4.2
of (Clements and Anderson, 1978) that W̃1(x̃T 1) in
(26) satisfies W̃1(x̃T 1) = limε→0 W̃ ε

1 (x̃T 1). Hence, tak-
ing the limit as ε → 0 in (29), (30) and (31), we obtain

W̃1(x̃T 1) = (x̃T 1− x̂1(T ))′X1(T )(x̃T 1− x̂(T ))

−ρ1[u0(·),y0(·)] (32)

where x̂1(T ) is defined by

˙̂x1(t) =
[

A11 +P1(t)[K
′
1K1−C′

1RC1]
]

x̂1(t)

+P1(t)[K
′
1K−C′

1RC]x̄(t)

+P1(t)C
′
1R(t)y0(t)+P1(t)K

′
1Gu0(t);

x̂1(0) = 0 (33)

and ρ1[u0(·),y0(·)] is defined by

ρ1[u0(·),y0(·)]
∆
=

∫ T

0

[

‖(Kx̄+K1x̂1 +Gu0)‖
2

−(Cx̄+C1x̂1− y0)
′R(Cx̄+C1x̂1− y0)

]

dt.

(34)

Since, X1(T ) ≥ 0, it follows that the pair [u0(·),y0(·)]
will be realizable if and only if ρ1[u0(·),y0(·)]≥−d.

Now let x̂ =

[

x̂1
0

]

+ x̄ and P(t) =

[

P1(t) 0
0 0

]

. Hence,

P(t) is the solution to (6). Also

˙̂x =

[

˙̂x1
0

]

+ ˙̄x

=

[

A11 A12
0 A22

][

x̂1
0

]

+

[

A11 A12
0 A22

]

x̄+B2u0

+

[

P1(t) 0
0 0

][

K′
1

K′
2

]

[K1 K2]

[

x̂1
0

]

−

[

P1(t) 0
0 0

][

C′
1

C′
2

]

R[C1 C2]

[

x̂1
0

]

+

[

P1(t) 0
0 0

][

K′
1

K′
2

]

Kx̄

−

[

P1(t) 0
0 0

][

C′
1

C′
2

]

RCx̄

+

[

P1(t) 0
0 0

][

C′
1

C′
2

]

Ry0

+

[

P1(t) 0
0 0

][

K′
1

K′
2

]

Gu0

= Ax̂+B2u0 +P(t)K ′Kx̂−P(t)C′RCx̂

+P(t)C′Ry0 +P(t)K ′Gu0

and x̂(0) = 0. That is, x̂(t) is defined as in (7). More-
over

ρ1[u0(·),y0(·)]

=

∫ T

0

∥

∥

∥

∥

Kx̄+[K1 K2]

[

x̂1
0

]

+Gu0

∥

∥

∥

∥

2

dt

−

∫ T

0









Cx̄+

[C1 C2]

[

x̂1
0

]

−y0









′

R









Cx̄+

[C1 C2]

[

x̂1
0

]

−y0









dt

=

∫ T

0

[

‖(Kx̂+Gu0)‖
2− (Cx̂

−y0)
′R(Cx̂− y0)

]

dt

= ρ [u0(·),y0(·)]

as defined in (8). Therefore, the pair [u0(·),y0(·)] will
be realizable if and only if ρ [u0(·),y0(·)] ≥ −d. This
completes the proof of the theorem.

2

Remark 7. (i) As in (Savkin and Petersen, 1995;
Savkin and Petersen, 1996), we can also use
the above theorem to obtain a set valued state
estimate of the state of the uncertain system (1),
(2). Indeed, if we define a quantity x̌1 = x̂1 + x̄1
then it is straightforward to verify that x̌1 is the
solution to the filter state equations



˙̌x1 =
[

A11 +P1(t)[K
′
1K1−C′

1RC1]
]

x̌1(t)

+[A12 +P1(t)[K
′
1K1−C′

1RC1]x̄2(t)

+P1(t)C
′
1R(t)y0(t)+P1(t)K

′
1Gu0(t)

x̌1(0) = 0.

Also, x̄2(t) is the solution to the state equations

˙̄x2 = A22x̄2 +B22u0; x̄2(0) = 0.

Furthermore, the quantity ρ1[u0(·),y0(·)] can be
re-written as

ρ1[u0(·),y0(·)] =

∫ T

0





‖(K1x̌1 +K2x̄2 +Gu0)‖
2−

(C1x̌1 +C2x̄2− y0)
′

×R(C1x̌1 +C2x̄2− y0)



dt.

Hence, using the fact that xT = x̃T + x̄(T ) =
[

x̌1
x̄2

]

, it follows from (32) that the set of pos-

sible values for the state of the uncertain system
(1), (2) at time T is given by







[

x1
x2

]

: (x1− x̌1)
′X1(T )(x1− x̌1)

≤ d +ρ1[u0(·),y0(·)] & x2 = x̄2(T )







.

(ii) An alternative interpretation of Theorem 6 is
that the state equations (7) and the condition
ρ [u0(·),y0(·)]≥−d provide a behavioural char-
acterization of the uncertain system (1), (2). In-
deed, from this point of view, the set of real-
izable input-output pairs is defined as a level
set of the quadratic functional ρ [u0(·),y0(·)]. In
this description, there is no need to distinguish
between the input u0(·) and the output y0(·) and
thus this description of the uncertain system can
be regarded as a behavioural description.
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