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AUTOTUNING PID CONTROL FOR LONG TIME-DELAY PROCESSES
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Abstract: A refined relay feedback identification autotuning PID/PI is proposed in this
paper which is capable of controlling long time-delay processes. The process is
approximated via FOPDT or SOPDT models, whose parameters are determined through
a modified relay feedback identification method. Employing zero-pole cancellation
principle, the PID/PI is tuned by the specified amplitude and phase margins, which can
guarantee fast response and strong robustness to the closed loop system. Model
identification and controller parameter tuning are done on-line without much influence
on the normal operation. In addition, this algorithm also has good disturbance rejection
capability. Copyright © 2002 IFAC
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1 INTRODUCTION

PID controller is widely used in the process
control industry because of its relatively simple
structure. Lately there have been significant efforts
to give it added capabilities by providing facilities
for automatic tuning, gain scheduling and adaption
(Astrom and Hagglund, 1984; 1995). However, it
has some drawbacks. It performs, for example,
poorly for processes with long time-delay.
Satisfactory system performance can’t be achieved
for PID strategies, whose parameters, for instance,
are tuned by Ziegler-Nichols Method (Z-N), A-H
Method (Astrom and Hagglund, 1984), etc. It is

thus of interest to refine PID controller to cope
with processes with long time-delay and to provide
it with some tuning facility. Here long time-delay
process refers to a process that satisfies 5.0/ >TL
where L  denotes pure time-delay and T  denotes
dominant time constant of the system.

A refined relay feedback identification autotuning
PID/PI control algorithm is proposed in this paper,
which is capable of controlling long time-delay
processes. The main contributions of this paper are
summarized as follows. The first one is employing a
modified relay feedback identification method to
obtain the dynamic information of long time-delay
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processes and introducing a correction coefficient

90C  of the oscillation amplitude valued within 0.81~

1.0. The second one is presenting a PID design
method based on amplitude and phase margin and
zero-pole cancellation principle, which can guarantee
fast response and strong robustness to the closed loop
system.

2 MATHEMATICAL MODEL DESCRIPTION

By far the most commonly used model in process
control is
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However, Astrom and Hagglund (1995) emphasize
that it is not a representative model and that the
conclusions drawn based on it may often be
misleading when applied to plants. The other
frequently used low-order models are
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Simulations (Astrom and Hagglund, 1995) indicate
that model (2) and (3) approximate plants better than
(1). For convenience of parameter identification on
line, now convert model (2) and (3) into
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Wang, et al (1999) point out that the fitting of the
Nyquist plot of model (4) to that of the real process is
incredibly close over a frequency range important for
control performance. Therefore, based on this model,
a PID/PI controller designed in terms of the specified
amplitude and phase margin can guarantee almost the
same amplitude and phase margin, respectively, to
the real process as the specified ones.

3 RELAY FEEDBACK IDENTIFICATION

Astrom and Hagglund (1984) and Wang (2000) detail
the merits of the relay feedback identification method.
In this paper a modified relay feedback structure
shown in fig.1 is used to identify model (1) and (4).

In fig.1, the negative reciprocal describing function
of relay is
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where d  is the relay amplitude and M  is the
amplitude of the relay input (the same as the
amplitude of the closed loop output). The oscillation

occurs at the point of 180ϖ  in fig.2. Now turn the

switch in fig.1 from position a to b, then there is
(Astrom and Hagglund, 1995)
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Substituting eq. (5) into (6) gives

          j
d

Mj
MN

jGp 4)(
1)( ϖπϖϖ −=−=     (7)

The corresponding oscillation occurs at the point of

90ϖ  in fig.2. Eq. (5) and (7) indicate that M  is

proportional to d . Then M  can thus be adjusted by
d  automatically. So the stable limit cycle amplitude
can be kept within the acceptable limits.

A method called, here, Two-Point Method is applied
to identify model (1) and (4). For model (1), Wang
(2000) and Astrom and Hagglund (1991) employ the

information of points 0ϖ  and 180ϖ  to determine its

parameters. However, the information of 0ϖ  and

90ϖ  is used, instead, to identify model (1) in this

paper. As for model (4), a similar method is applied
as Wang’s (2000), which all make use of the

information of points 90ϖ  and 180ϖ . But the relay is

preceded the integrator in this paper (see fig.1).
Fig.1 The structure of relay feedback based

parameter identification method
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The introduction of the integrator following a relay
has two main functions as below: a) Improving the
approximating ability of the describing function to
nonlinear element. The existence of long time-delay
leads to the decrease of the plant’s corner frequency
and the oscillation frequency will also decrease
consequently. When conducting experiments for
dynamic characteristic identification by the modified
autotuning method, the output of the closed loop
system (ie, the input of the relay element) is notably
different from a sinusoid wave, which decreases the
description precision of describing function greatly.
By means of the attenuation characteristic of integral
element to high frequency signals, the high
harmonics will be attenuated as far as possible when
they pass through the integrator. The ratio of the first
harmonic will then increase relatively, which
improves the approximation of the describing
function to nonlinear elements. Hence accurate
dynamics can be available. b) Correcting the
measured oscillation amplitude. The introduction of
the integrator leads to an output of approximate
triangular wave in the closed loop when conducting a
relay feedback identification experiment. So the input
of relay is not a sinusoid signal, which also affects
the description precision of describing function.
However, the first-harmonic amplitude of the output
triangular wave can be easily figured out because of
its special waveform and the value of the first-
harmonic amplitude is independent of the oscillation
frequency. The resulted value can be used as a
theoretical basis to correct the measured oscillation
amplitude.

Generally (Astrom and Hagglund, 1984; Wang and
Shao, 1999; Wang, 2000), the period of the limit
cycle oscillation can be easily determined from the
times between zero-crossings. The amplitude M
may be determined by measuring the peak-to-peak
values of the output. For long time-delay processes,
however, simulations demonstrate that the resulted
value of M  often tends to be larger, which must be

corrected. Here, let aCa 90ˆ =  where 90C  is a

correction coefficient, whose value will vary slightly
according to the difference of the real time-delay
processes. It can be assigned within 0.81~1.0. Where
0.81 is the ratio between the first-harmonic amplitude
of the triangular wave and the triangular wave
amplitude (the accurate value is 2/8 π ), and 1.0 is

corresponding to the triangular wave amplitude. It is

suggested 91.090 =C  for large time-delay processes

and 0.190 =C  for little time-delay processes.

3.1 Parameter identification for model (1)

Suppose the frequency characteristics of model (1) at

points 0ϖ  and 90ϖ  equal that of the process )(sGP ,

respectively. Then
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Substituting eq. (8) to (1) and (7) gives
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In fact, 0K is static gain of the controlled object. It

must be known or can be got from the step response
near the operating-point.

3.2 Parameter identification for model (4)

Suppose the frequency characteristics of model (4) at

the point of 90ϖ  and 180ϖ  equal that of )(sGP ,

respectively. Then
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Substituting eq. (10) to (4), (5) and (7) and
conducting some complicated calculations give
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Since eq. (14) is a nonlinear equation, Newton-
Raphson’s method is used to generate a sufficiently
accurate solution after a few iterations. Let
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then the Newton-Raphson iterative express can be
described as
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where )(' Lf  is the derivative of )(Lf . The initial

value 0L  of the iterative variable L  is very crucial,

which has great influence on iteration times and
identification precision. From eq. (12), there are

0)sin( 180 >Lϖ , i.e. ),0(180 πϖ ∈L ; 0)cos( 90 >Lϖ , i.e.

)2/,0(90 πϖ ∈L . So the previous sine and cosine

functions can be approximated by

)()()sin( 180
2
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1)()()cos( 90
2
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where 3357.0−≈p , 1640.1≈q , 1092.0−≈r . The

fittings are exact at the points 2/,4/,0 ππϖ =L .

Applying eq. (17) and (18) to (14) obtains

LkkLkk )1640.11092.0()(3357.0 90180
2

1809090180 ++− ϖϖ

          0/ 90180 =− ϖk                   (19)

Solving eq. (18) and taking the smaller absolute root

yields 0L . Apply it to eq. (16) to obtain the more

accurate L  by a few iterations. And then substitute
the resulted value into eq. (11)~(13) for the other

parameters ba,  and c  of model (4).

4 PID/PI PARAMETER CALCULATION

Here, the zero-pole cancellation principle is applied
to determine PID/PI parameters in terms of amplitude
and phase margin. The presence of long time-delay
leads to tremendously sluggish system response. It is
possible to attain a fast response as far as possible in
terms of zero-pole cancellation method. Since
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so it is feasible to cancel the pole of model (1) (for

example, 1+Ts ) via the zero of PID/PI controller.
Such conclusion can also be drawn for model (2)~(4).
At the same time, such a PID/PI controller whose
parameters are tuned in terms of amplitude and phase
margin can guarantee the closed loop system well
stable and strongly robust

For model (4), let PID controller be
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Determine its parameters so that its zeros cancel all
the poles of model (4). That is
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where ok  is an unknown parameter whose value will

be specified by the amplitude margin mA and phase

margin mφ . From eq. (4), (20) and (21), it follows
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According to the definition of amplitude and phase
margin, there is







+==

=−=

)]()(arg[,1)()(

/1)()(,)]()(arg[

ppcmppc

mggcggc

jGjGjGjG

AjGjGjGjG

ϖϖπφϖϖ

ϖϖπϖϖ

(23)
Substituting eq. (21) into (23) gives
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Eq. (24) is a constraint condition of zero-pole

cancellation for )()( sGsGc . Usually mA  values within

5~2 , then 5/2~4/ ππφ =m . Fig.3 depicts the

relationship between mA and mφ . Applying eq. (25)

to (22) yields
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Fig.3 The relationship between mA and mφ
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or

          baTcbT
L
bK dimp /,/),

2
( ==−= φπ   (27)

As for model (1), a PI controller )11()(
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is designed. Similarly to parameter tuning for model
(4) above, there is
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5 SIMULATIONS

5.1 Simulations for identification precision and
control performance

The following four models s
p e
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=  are considered to compare

identification precision of the proposed method in
this paper with that of Wang (2000). Evidently they
all belong to processes with long time-delay. Now
approximate them with FOPDT (first-order plus dead
time) or SOPDT (second-order plus dead time),
respectively. The simulation results are given in the
form of tables and graphs. For the sake of margins,
only Nyquist plots are presented as shown in fig.4.
Apparently, the proposed identification method
performs better than Wang’s (2000). The improve-
ment of identification precision attributes to the

introduction of the correction coefficient 90C  and the

decision of the approximating expresses for time-
delay initial value. Compared with Wang’s (2000),
both are undergone modification so that they are
more suitable for identification of long time-delay
processes. However, for second oscillatory processes,
the identification precision will decrease evidently
with the increase of time-delay (see fig.4 (d)).

Simulations are also done for control performance
comparisons based on the same four models above.
PID/PI controllers are tuned via Z-N method, A-H
method, Smith predictive PID and the proposed

method in this paper (let 3=mA , then, 3/πφ =
m

),

respectively. The PID controller parameters in Smith
predictive structure are tuned in terms of Z-N method.
The setpoint inputs are unit step signals and the
disturbance signals are introduced at t=100s with an

(a) )(1 sGp Nyquist plot
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(b) )(2 sGp  Nyquist plot
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(c) )(3 sGp  Nyquist plot
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(d) )(4 sGp  Nyquist plot
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Fig.4 The resulted Nyquist plots via the proposed
method and the method of Wang (2000)

      : (solid) the original model
       : (dashed) the proposed method
:       : (dotted) method of Wang (2000)

1: ZN-PID; 2: the proposed; 3: ZN-Smith; 4: AH-PID.
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(b) L increases 30%, and T1, T2 decrease 20%

Fig.5 The responses of )(3 sGp  in different controllers
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amplitude of 50% unit step. It is shown that the
proposed method has fast system response and that
its disturbance rejection ability and robustness also
excel the other three. Fig.5 are response curves based

on simulation model )(3 sGp .

5.2 Simulations for autotuning process

Let the mathematical model of the real plant be
s

p e
s

sG 6
45 )1(

1)( −
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= . Firstly, approximating it by

model (1) and (4), respectively, gives the following

two low-order models se
s
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= . Then

design PID/PI controller (let 3=mA , 3/πφ =
m

) based

on )(51 sG  and )(52 sG , respectively. And the corres-

ponding controllers are )
1026.2

11(1381.0)(
s

sGc1 +=

and )5113.0
2677.3

11(2412.0)( s
s

sGc2 ++= . Finally

apply )(1 sGc , )(2 sGc  to )(5 sGp and )(51 sG , )(52 sG ,

respectively, to observe their control performance.
Fig.6 shows the control results. It’s easy to see that

the response of )(5 sGp  almost overlaps with that of

)(51 sG  and )(52 sG  with fast response speed and little

overshoot. It means that the proposed method of
autotuning PID/PI controller in this paper has good
identification capability and control performance.

6 CONCLUSION

The proposed control algorithm in this paper has
many advantages such as high precision for model
identification, explicit parameter expresses for
controller tuning, fast response, strong robustness
and good disturbance rejection ability. And it’s very
suitable for controlling such long time-delay
processes that require fast response, however, permit
the existence of overshot. At the same time, the
method makes fully use of the advantages of the
relay feedback identification method, by which
model identification and controller parameter tuning
can be done on-line without much influence on the
normal operation of the real system. Therefore, it is
of great value for engineering practice. However, an
important problem, bumpless switching between
identification on line and PID/PI control, must be
tackled before putting into application in industry.
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Fig.6 Response of the real process (solid line)
and the low-order approximation model
(dashed line) under the proposed PID/PI


