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Abstract: A universal single-input-single-output (SISO) controller is proposed which is
based on higher-order sliding modes and requires output measurements only. The
uncertain SISO dynamic system to be controlled is required to have a permanent known-
in-advance relative degree. Its exact mathematical model is not needed. The proposed
controller provides for exact finite-time-convergent output tracking with exact output
measurements, otherwise the tracking accuracy is proportional to the magnitude of the
measurement noise. The control may be made arbitrarily smooth, thereby removing the
chattering effect.Copyright © 2002 IFAC
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1. INTRODUCTION smooth input to be tracked in real time. Then the
) N ~standard sliding-mode contral= - k signc may be
Control under heavy uncertainty conditions remains considered as a universal output controller applicable

one of the main subjects of the modern control it the relative degree is 1, i.e. 6 explicitly depends
theory. While a number of advanced methods like on the controlu and &, > 0. Higher-order sliding

adaptation, absolute stability methods or the back- mode (Levant, 1993 Bartoliniet al, 1999) is

stepping procedure are based on relatively deta“Ie{japplicable for controlling SISO uncertain systems

knowledge of the controlled system, the sliding-mode with arbitrary relative degree. The corresponding

control approach requirements are more moderate.. .. .
The idea is to react immediately to any deviation of finite-time-convergent controllers (Levant, 2001a)

the system from some properly chosen constraint'cdu!re actually only the knowledge of the system

steering it back by a sufficiently energetic effort. relative de_greg. They proy|de also for higher
Sliding-mode implementation is based on its accuracy with discrete Sa”?p"”g and, properly used,
insensitivity to external and internal disturbances and totally remove the c_:hattermg effect. The produ_ced
high accuracy (Utkin, 1992; Zinober, 1994). The control is a discontinuous function of the tracking

main drawback of the standard sliding modes is deviation o and of a number of its real-time-
mostly related to the so-called chattering effect calculated successive derivatives. The main problem

caused by the high-frequency control switching. in realization of this appr(_)ach is the need to measure
or calculate these derivatives.

Let the constraint be given by the equatior s -
h(t) = 0, wheres is some available output variable of
an uncertain  single-input-single-output  (SISO)
dynamic system andi(t) is an unknown-in-advance

The problem of real-time exact differentiation is
mostly considered as ill-posed, for any attempt to
differentiate  small noises leads to unbounded
differentiation errors. Nevertheless, the problem is



solvable, some restrictions having been imposed on
the unknown basic not-noisy input signal. In
particular, nth-order exact robust differentiation is
possible if the nth derivative of the input is assumed
to have aknown Lipschitz constant (Levant, 1998).

Recently proposed robust exact differentiators with
finite-time convergence (Levant, 2001b) allow
congtructing a universal SISO controller. With
relative degree r such a controller is a combination of
a diding controller based on an r-dliding finite-time-
convergent siding mode and of an exact robust  (r-
1)th-order differentiator with finite-time
convergence. The resulting controller provides for
exact tracking o = 0 after afinite-time transient when
the measurements of the deviation o are exact, and
for the tracking error proportional to the maximal
measurement error otherwise. The corresponding
Theorems are formulated and proved in the paper.
Simulation examples of control of uncertain systems
with the relative degrees 3 and 4 are demonstrated.

2. HIGHER-ORDER SLIDING-MODE
CONTROLLERS

While successively differentiating output variable
along trajectories of a discontinuous system, a
discontinuity will be encountered sooner or later in
the general case. Thus, diding modes ¢ = 0 may be
classified by the number r of the first successive tota
derivative o which is not a continuous function of
the state space variables or does not exist due to
some reason like trajectory nonuniqueness. That
number is called diding order (see (Levant, 1993;
Fridman and Levant, 1996) for the formal
definitions). Hence, the r-th order diding mode is
determined by the equalities

6=6=6=..=c""=0 (1)

which impose an r-dimensional condition on the state
of the dynamic system (Fig. 1).

Fig. 1. 2-diding mode

The standard sliding mode used in the most variable
structure systems (VSS) is of the first order (¢ is
discontinuous). Consider a dynamic system of the

form
X = a(t,x) + b(t,x)u, o =o(t, X), ()]

n .
Here x € R, a, b, o are unknown smooth functions,

U € R, nisalso uncertain. The relative degreer of the
system is assumed to be constant and known. It is
supposed that

0<K,<LL ‘o <K, |[Lol<L (3

. r-1 r) r
for ome K, Ky, L >0.Sincel, L, 6= 20 ,L,0
= G(r)|u:0, conditions (3) are reformulated in terms of
input-output relations. It is assumed that trajectories
of (2) are infinitely extendible in time for any

L ebesgue-measurable bounded control. In practice it
means that the system be weakly minimum phase.

Letp>r,i=1,..,r-1 Denote
(r-1)/r

Nl,r = |G| ’ . . .
N, = (o |6 0 .+ oD PR
N1, = (of+ 16 P .+ 16,

¢o, =0,

b1, = 0+ By Ny, sign(o),
diy = o+ Bi N, sign(¢i.q, ),

where B,..., B,.; are positive numbers. It was proved
by Levant (2001) that with properly chosen positive
parameters f3,,..., B,.;, o the controller

u=-osgn(@,(6,6, .. ). (4

provides for the appearance of r-diding mode s =0
attracting trajectoriesin finite time.

Each time some finite-time transient process is
mentioned in this paper it means that the transient
time is a continuous function of initial conditions.

The positive parameters f,,..., B,., are to be chosen
sufficiently large in the index order. Each choice
determines a controller family applicable to all
systems (2) of relative degree r. Parameter o > 0 isto
be chosen specifically for any fixed C, K, K,;, most
conveniently by computer simulation in order to
avoid redundantly large estimations of C, K, K.
The proposed controller is easily generalized:
coefficients of N, may be any positive numbers etc.

Obviously, o is to be negative with 6" < 0,
Following are controllers with r < 5, f; tested for r <

4, p being the least common multiple of 1, 2, ..., r:
1. u=-asigno,
2. u=-osign(s + o] ‘sign o),
. - .3 1/6
3. u=-asgn(é+2 (| [+ol)
. . 2/3 .
sign(c + |o| "sign o)),
4. u=-asg{5+3(5+ +ol)  sgn[6+
(6 “+o])*sign(& +0.5 o sign o)1},
5. u=-osign (o + B, (of +16 [+ 5[+
.. . 30,1/60 . 12 . 15
lG |20)l/3Osgn(G +B3 (|G|12+ lG !I.5 :-L’-/ZO
[o[") sign(c + Bl +|5[") v
sgn(o +B4lo| "signo))))

Controller (4) provides in finite time for the tracking



accuracy |c(i)| < airr'i with sampling interval 1. That is
the best possible accuracy attainable with

discontinuous 6"’ (Levant, 1993). The following new
result shows robustness of controller (4) with respect
to measurement errors.

Theorem 1. Let 6" be measured with accuracy
ve " for some fixed v;>0,i=1, .., r-1 Then there
are such positive constants y; that for any € > 0 the
following inequalities are established in finite time:

(r-i)r
i €

I < =0 ..r-1.

3. ROBUST EXACT DIFFERENTIATION

Controller (4) requires real-time exact calculation or
direct meawrement of 6,6, Y Theidentitycxr
= u—cs( +L, ‘s implies |c | <L + aK,, , which

allows implementation of robust (r-1)th-order
differentiators (Levant, 1998, 2001b).

Let input signa f(t) be a function defined on [0, «),
consisting of a bounded Lebesgue-measurable noise
with unknown features and an unknown base signal
fo(t) with the nth derivative having a known Lipschitz
constant C> 0.

Denote by D, ,(f(-),C) the (n-1)th-order differentiator
producing outputs Dn_li ,1 =01, .., nl, beng
estimations of f,, fy, fo, ... fo(n'l) for any input f(t)
with fo(n'l) having Lipschitz constant C > 0. Then the

nth-order differentiator has the outputs z = Dni ,i=0,
1, ..., n, defined recursively as follows:
n/(n+1)

2o =V, V=470 sign(z- (1) + z,
2= Dy (), O, :2,= Dy (), ©).
Here Dy(f(-), C) isasimple nonlinear filter

Dy 2 =-Asign(z- f(t)), A>C.

Thus, the nth-order differentiator (Levant, 2001b)
has the form

. nn+1) .
262 ¥ = o | 2= (O] 1")/ Y sign(zy- (1) + 2,
2=V, Vi = A2Vl sgn(z; - Vo) + 2,
. (5)
. 12 .
2, 1= Vot Vit = Al Zyg - Vil SION(Z, 47 Vi o)+ 2,

n= Ao SON(Z,- Vo),

where A; > 0 are chosen sufficiently large in the
reverse order. Note that it contains actualy all the
lower-order differentiators and each recursive step
requires tuning one parameter only.

Remark. It is easy to check that differentiator (5) may
be rewritten in the non-recursive form

2= -2 Iz f(O)]

(n-i)/(n+1)

sgn(z-f(Y) +z,,,  (6)

7, = -k, Sign(z, - f(t). %, are
calculated on the basisof A, ..., A,, in = Ap

where i = 0,..., n-1,

Following relations are established in finite time with

properly chosen parameters, (Levant, 2001b):

1. if f(t) = fy(t) then _
=0 Z=vi,=f M), i=1..n

2. if | f(t) - fy(t)] < €, then for some positive constants
L;, v; depending exclusively on the parameters of
differentiator (5)

n-i+l)/(n+1) i - O, o n,

, 1=0,..,n1;

3. if f(t) = fo(t), but f(t) is sampled with constant
period t > 0, then for some ,, v;

(n i(n+ 1)

Iz - 1, (t)|<g, "tli=0 ..n,
A L i=0,..n-1.

M- £ < vt

Parameters A, being tuned for C = 1, the parameters
are easily recalculated for any value of C by formula
A = Ay c’™™ Followi ng are the parameters of the
5th-order differentiator tuned with C = 1: A, =50,
A =30,A,=16,1,=8 A, =4,A;=2.

4. UNIVERSAL SISO CONTROLLER

Consider uncertain system (2), (3). Combining
controller (4) and differentiator (5) achieve

U= 0 SO0, 1,(Zor 21 - Z0) @

) - .

Zy =Vo,Vp=-hg | %- ol r rsgn(zo—c)+zl,

) -2/ -1 .

2 =vy vy =y 120 %) P signz, - vg) + 2,
" (8)
SR PAPERVAR I [0 CAPSRVARY LAY
4= '}‘r—l SIgn(zrl - Vr-z)!

Zr72 = Vr—2* Vr-2

where parameters A; of differentiator (8) are chosen
according to the condition |c(r)| <C,C2L+akKy. As
noted above, relations A, = A, c’" " may be used
where A,; are chosen in advance for C = 1. Hence, in
case when L and K, are known, only one parameter

o isreally needed to be tuned, otherwise both C and
o might be found in computer simulation.

Theorem 2. Let ¢ be measured with a Lebesgue-
measurable noise n, |n| < €. Then with properly
chosen parameters of controller (7), (8) the
following inequalities are established in finitetimein
the closed system (2), (7), (8) for some positive ;:

(r-iyr

|G(i)|S},li8 ,i=0,..,r-1

Theorem 1 means that with exact measurements (g =
0) anr-diding mode ¢ = 0 is established in the closed
system globally attracting trajectoriesin finite time.



Theorem 3. Let 1 > 0 be the constant input sampling
interval and the noises be absent. Then the following
inequalities are established in finite time for some
positive constants ;:

|G(I)|S},li‘tr- =0, ..

5. THE PROOFS

All the proofs are based on homogeneity reasoning.
Following is the proof of Theorem 2. The equality of
the relative degree of (2) to r implies that

"= Lls+ull, o=L'c+u %G(r),
Asfollows from (3)

0" € [-C, C] + [Kp Kyl U. 9)
Denote &, = 7 - ", Taking into account n € [-¢, €]
and form (6) of the differentiator achieve

U= -0 SNy 1, (0+Eq, 6 +y, 0 +E)  (10)

Eoe ~hol&o+ [e, 6] 1" sign(g,Hoe, €]) + &,

&y e hq &+ [ ell ™" sgn(E,+ [, €]) + &,
(11)

E e -holEot [-6 8l SONE* [-€, D) &,
é.ar—l € _)‘r—ls-gn(é.ao"' [-8, 8])

The right-hand set (9) - (11) is understood in the
natural way. The differential inclusion itself is
understood in the Filippov sense (1988), which
means that the right-hand vector set is enlarged in a
special way in order to satisfy certain convexity and
continuity conditions. This inclusion does not
“remember” anything on system (2) except the
constants r, C, K, Ky, €. Thus, providing for the
convergence of cs('), & to zero or to some small
vicinity of the origin, the tracking problem is
simultaneously solved for al systems (2) with the
same parameters.

The dynamics of the differentiator is described by
(11) and is completely independent of the system
dynamics (9), (10). Thus, with € = 0 derivative
deviations &, vanish in finite time (Levant, 2001b).
Starting from that moment the controller receives
exact values of ¢, and in its turn provides for finite
time convergence to the r-diding mode " = 0,
i =0, .., r-1 (Levant, 2001a). Hence, trgjectories of
(9) - (112) converge to O in finite time withe = 0.

Consider now ¢ > 0. It is easy to see that the
transformation

0) o) .
(to &) > (kt,x o',k &), i=0,.,r-1 (12)

transfers trajectories of (9) - (11) into trajectories of
(9) - (11) but with the changed noise magnitude K.

Consider some closed ball B, with the center at the
origin. There is such T > 0 that with € = 0 any
trgjectory starting in B, enters the origin to stay there
forever. With sufficiently small g, the trajectories will
gather in some small ball B”around the origin in time
T. Also any trgjectory starting in B’ returns back in
time T. As follows from the continuous dependence
on the right-hand side and initial conditions of the
differential inclusion, these trajectories do not leave
some larger but still small ball B, Thus, any
trajectory starting in B, enters By in time T to stay
there forever.

It is easy to build such a sequence of ellipsoids B, B;
c By,;, using transformation (12), that their union
covers the whole space and all trgjectories of (9) -
(11) starting in B, enter B, i =0, 1, ..., infinite time
and stay there forever. Thus, B, is a finite-time
dtracting set. The convergence time is easly
estimated. Now taking any € > 0 and applying
transformation (12) with k = (ele,) " achieve the
desired asymptotics of the attracting set. B

Theorems 1, 3 are proved in asimilar way.

6. SMULATION EXAMPLE

Consider a variable-length pendulum control
problem. There is no friction. All motions are
restricted to some vertical plane. A load of known
mass m is moving along the pendulum rod (Fig. 1).
Its distance from O equals R(t) and is not measured.
An engine transmits a torque w which is considered
as control. The task is to track some function x; given
in real time by the angular coordinate x of the rod.

. &

Fig. 2: lllustrative example

The system is described by the equation

G = ZRX glsinx+
6=-2 2 x-gq=
R R mR?

W, (13)

where g = 9.81 is the gravitational constant, m = 1
was taken. Let 0< R, < R<R,, R, R, %, and %,
be bounded, ¢ = x-x, be available. The initia
conditions are x(0) = x (0) = 0. The relative degree of
the system is 2, but Lazcs depends on x and is not
uniformly bounded. Nevertheless al requirements of

the Theorems are satisfied in any bounded vicinity of
the origin, which provides for the local application of



the method. Following are the functions R and x,
considered in the simulation:

R=1+0.25sin4t + 0.5 cost,
x,= 0.5sin0.5t + 0.5 cost .

While parameters of the controllers demonstrated
further may be evaluated with respect to the above-
mentioned restrictions on unknown functions R(t),
x4(t), their derivatives and some chosen bound on x,
they are usually excessively large in this case. The
better way is to tune the parameters during
simulation. Surely, the controlled class is somewhat
smaller, but it till allows significant disturbances of
the considered realizations of Rand x.

6.1 3-diding pendulum control

Introduce a new control u = \vin order to produce a
continuous  Lipschitzian torque w, w(0) = 0. The
resulting system has now relative degree r = 3. The
corresponding parameters of controller (7), (8) were
chosen asfollows:

W= u=-10sign(z, + 2 (7 + 2)
. 213 .
sgn(z+ 7, Sgnz)),
Zy = VoV = -10 | %5~ 0| *° sign(zy- 0) + 2,

172 .
Z =V, vy =-30|2-Vo|  Sgn(z- V) + 2,
2,=-50sign(z,- vy,

(14)

also the controller with direct measurements was
considered (the third standard controller from
Section 2):

W= u=-108gn(s +2 (5 [+
Sgn(S + o[ sign o). (15)

The integration was carried out according to the
Euler method (the only integration method possible
with discontinuous dynamics), the sampling step
being equal to the integration step © = 10 In the
absence of noises the tracking accuracies
o| < 5.7.10%, |6 < 81107, |6| < 2.810° were
attained after application of the controller with direct
measurements (15). Noises in the measurements of
6, 6, 6 of the magnitudes 0.001, 0.01, 0.1
respectively, lead to the tracking accuracies
| < 1.010°, |6] < 5410° |6| < 017. That
demonstrates high robustness of 3-dliding controller
(15) with respect to measurement noises. Fast
convergence of the differentiator outputs to the
directly calculated derivatives of ¢ in the noised
system is demonstrated in Fig. 3d (the differentiator
was not used in control).

In the absence of output noises the tracking
accuracies |o| < 1.2:10°, |5 | < 26107, |6 | < 0.016
were attained after application of controller (14)
(Fig. 3a). The corresponding graph of the torque is

shown in Fig. 3c. In the presence of a measurement
noise of the magnitude 10° the accuracies 4.1.10",
6.810°, 0.33 were respectively attained. After the

noise magnitude was changed to 10° the accuracies
0.0038, 0.030, 0.69 were attained, which corresponds
to Theorem 2 (Fig. 3b).

12 IJ‘ X, . 12y X,
06— 048
B b ~
wmpr'! 2 39 3 g
06 \ 0
|

c. Torque d. Differentiator convergence

Fig. 3: 3-dliding pendulum control

6.2 4-diding pendulum control

;| 0,6,6,8

d. Differentiator convergence

c. Torque

Fig. 4: 4-diding control of the pendulum with an
actuator

Introduce an actuator in dynamic system (13):
W=-5W +6w+n +u, n]|<10. (16)

Heren is some input noise. The relative degree of the
system (13), (16) with the output ¢ is 4 and controller
(7), (8) wasrealized asfollows:

u=-708ign{z+ 3 (2, + 2 +z)  Sign[z+
4 16 . 3/4 .

(& +lal) " San(z:+05 &l sign ),
7y =Vo Vo=-10|7-0|" Sgn(zy-0) +z,  (17)
. 2/3 .
7=V, v =-1012- vl sign(z,- vo) + 2,
2y =V V=~ 15| 2 vy|  sign(z,- vy) + 2,
Z3=- 150 sign(z;- v,).

The fourth standard controller from Section 2 with



o = 70 is used here. Parameter 150 of the
differentiator cannot be considered as a high gain
here, for it is seen from Fig. 4d that the variation
rates of z; and 6 are comparable. The system
dynamics requires relatively large magnitude of
control and the corresponding differentiator
parameters.

In the absence of output noises the tracking
accuracies o] < 3.410°, || < 26107,
6] < 7.1.10°, [5] < 0.057 were attained after
application of controller (17) (Fig. 4a, b) with t =
2.10°. The corresponding torque signal is shown in
Fig. 4c. It is seen from Fig. 4d that the embedded
third-order  differentiator provides for exact
estimations of output derivatives. The tracking
accuracies 0.032, 0.036, 0.39, 6.7 respectively are

attained with the input-noise magnitude 107, It is
seen that 4-dliding controller (17) is much more
sensitive to input noises than 3-dliding controller (14)
due to natural senditivity of the higher-order
differentiation.

7. CONCLUSIONS

Arbitrary-order  real-time exact differentiation
together with the arbitrary-order sliding controllers
provide for full SISO control based on the input
measurements only, when the only information on the
controlled uncertain process is actualy its relative
degree. The obtained controller is locally applicable
to general case SISO systems; it is also globally
applicable if the relative degree is constant and few
boundedness restrictions hold globaly. The
controller is proved to provide for extremely high
tracking accuracy in the absence of noises. The
resulting accuracy is proportional to Tt being a
sampling period and r being the relative degree. That
is the best possible accuracy with discontinuous
control (Levant, 1993). It may be further improved
increasing the relative degree artificially, which
produces arbitrarily smooth control and removes the
chattering effect.

The higher-order dliding controllers are shown to be
very robust with respect to errors in direct
measurements of successive input derivatives. Also
the proposed closed-loop output-feedback controller
is robust with respect to output noises. At the same
time this robustness of the output-feedback controller
decreases drastically with the growing relative
degree. The reason is not an unsuccessful
differentiator structure, but the very nature of the
higher order differentiation (Levant, 2001b).

Thus, direct measurements of successive output
derivatives are redundant if the output measurements
are sufficiently accurate. It is important that the only
needed information on the measurement noise is its
magnitude, no frequency considerations are relevant.

It is easy to see that most practically important
problems of output control are covered by the cases
when relative degree r equals 2, 3 and 4, rarely 5.
Indeed, according to the Newton law, the relative
degree of a gpatial variable with respect to a force,
being understood as a control, isr = 2. Taking into
account some dynamic actuator, achieve relative
degree 3 or 4. If the actuator input is needed to be a
continuous Lipschitz function, the relative degree has
to be artificially increased to 4 or 5.
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