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Notations:

� Forx; y of Rn ; x � y (respectively,x < y) if
xi � yi (respectively xi < yi), i = 1; :::; n:

� int(D): in terior of the set D; whereas @D
denotes its boundary:

� If x is a v ector ofRn , then :

x+i = sup(xi; 0); x
�

i = sup(�xi; 0); and xT is
the transpose of x:

� For a matrixA of Rn�n :

~A =

�
A1 A2

A2 A1

�
; A1 and A2 are tw omatrices of

Rn�n ; suc h that:

A1(i; j) =

�
A(i; j); if i = j
sup(A(i; j); 0); if i 6= j

A2(i; j) =

�
0; if i = j
sup(�A(i; j); 0), if i 6= j

1. INTRODUCTION

Energetic and technological limitations on the dy-
namic systems often result in linear constraints on
the states or /and the control v ectors. The intro-
duction of the positiv einvariance concept pla ys
a fundamental role in the constrained regulator
problem.

The application of this concept in the constrained
con trol linear systems leads to obtain a satis-
factory result as w aspresented by sev eral pub-
lications (Benzaouia and Burgat, 1988; Benza-
ouia and Burgat, 1989; Bitsoris, 1991; Benzaouia,
1991; Benzaouia, 1994; Benzaouia and Baddou,
1999)...It is in the same way for this work, which
rev eals the following situation: given an initial do-
main Do generated by a dynamics imposed on the
system and an initial state Xo de�ned outside Do,
our objective is to �nd a control la w which allo ws
the homothetic expansion of the initial domain
un til it con tains the stateXo and the trajectory of
the state vector tends asymptotically to the origin
while the constraints on the control are respected.
Using the piecewise linear con trol la w developed
in (Benzaouia and Baddou, 1999), we manage to
�nd a con trol law not only satisfactory for the
problem which we propose to solve, but also useful
to �nd the maximal domain of the initial states
with respect to the proposed methodology.
The fact that the computation of the control law is
related to the admissibility of the stateXo; it leads
to tackle a problem of great in terest: it consist
of determining the domain of all the initial states
for which we can always �nd an admissible control
which emanate the system to convergence and sta-
bilit y. In this context sev eral works were published
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such as, (Dorea and Hennet, 1996; Blanchini et al.,
1995; Lasserre, 1993; Gutman and Cwikel, 1987),
but they represent in the majority of the cases a
complexity algorithmic. The interest of this work
lies on the simplicity of the computations and the
implementation of the �nal dynamics imposed on
the system with respect to the widening of the
initial domain.
This paper is structured in the following way: the
1st section is devoted to the preliminary results
and position of the problem, the solution of this
problem constitutes the object of the 2nd section
accompanied by an illustrative example

2. PRELIMINARY RESULTS AND POSITION
OF THE PROBLEM

The evolution of the process is described by an
equation of the form:

:
x(t) = Ax(t) +B u(t); Xo 2 Rn (1)

where x 2 Rn and u 2 Rm are the state and the
control of the system respectively. Matrices A and
B are constant with appropriate dimensions, Xo

is the initial state of the system. We assume that
:

- (A;B) is stabilizable.
- A possesses at least (n�m) stable eigenvalues.

The control u is subject to linear constant con-
straint of the form u 2 
where:


 = fu 2 Rm=� umin � u � umax g
with, umin; umax 2 intRm+

(2)

The regulator problem for system (1) consists in
realizing the following control law :

u = Fox where Fo 2 Rm�n (3)

The control is admissible only if the state is
constrained to evolve in a speci�ed domain de�ned
by:

Do(Fo; umin; umax) =
fx 2 Rn=� umin � Fox � umaxg

(4)

In such a case, system (3), becomes:
:
x = (A+B Fo)x (5)

To apply the results which guarantee the positive
invariance of domain (4) with respect to motions
of system (1), we must �nd a matrixHo such that:�

Fo(A+B Fo) = HoFoeHo U � 0
(6)

where U = [utmax; u
t
min]

t

The matrix Fo is solution of the matrix equation:

X A+X BX = HoX (7)

see for this end (Benzaouia, 1994).

The problem in question is to �nd a control law
to be applied to the system, when Xo is de�ned

outside the domain Do(Fo; umin; umax) generated
by the regulator Fo characterizing the dynamics
imposed on the system. The solution suggested
thereafter is an extension of the piecewise lin-
ear constrained control for continuous-time sys-
tems (Benzaouia and Baddou, 1999). This method
consists in changing of the closed-loop dynamics
systems during its evolution. We use for this the
following control law:

u = F x with F = �Fo (8)

The matrix H , satisfying the equation F (A +
BF ) = HF; is obtained from the following lemma:

Lemma 1. (Benzaouia and Baddou, 1999): If ma-
trix Fo has full rank, then H can be computed
from the following equality:

H = Ho + (� � 1)FoB (9)

Remark 1:

If matrix Ho is diagonal, the following equality is
satis�ed: eH U = eHoU + (� � 1) gFoBU
which has a great utility in the sequel.

3. MAIN RESULTS

Consider the following control law:

u = F x where F = � Fo (10)

with 0 < � < 1

According to Lemma 1, we obtain the matrix H
from the following equation:

H = Ho + (� � 1)FoB (11)

Our objective is to �nd the scalar � which satisfy
the following conditions:

i)

Xo 2 @ D(F; umin; umax) (12)

where

D(F; umin; umax) =
fx 2 Rn=� umin � F x � umaxg

ii) eHU < 0 (13)

with

H = Ho + (� � 1)FoB

Lemma 2. : For any stateXo =2 Do(Fo; umin; umax);
there always exists a scalar � 2 ]0; 1[ such that
Xo 2 @D(�Fo; umin; umax):

Proof:



We look for � such that (10) and (12) are satis�ed,
that is,

�umin � � FoXo � umax

which is equivalent to,8<:
�(FoXo)

+ � umax

�(FoXo)
� � umin

where, (FoXo) = (FoXo)
+ � (FoXo)

�:

this leads to,

� � minmin
j

(
ujmax

(FoXo)
+

j

;
uj
min

(FoXo)
�

j

)
Particularly, if we choose

� = minmin
j

(
ujmax

(FoXo)
+

j

;
uj
min

(FoXo)
�

j

)
(14)

then Xo 2 @D(�Fo; umin; umax): �

Lemma 3. : If the scalar � given by (14) satis�es
condition (13) then the control u = �Fox is ad-
missible and the system in closed-loop is asymp-
totically stable for any Xo 2 D(� Fo; umin; umax):

Remark 2:

- The homothetic expansion of the initial set
Do(Fo; umin; umax) until it contains the state Xo

causes a deceleration of the system dynamics,
but the fact of choosing � such that Xo 2
@D(� Fo; umin; umax) makes it possible not too
much slow down the system.

- Once the domain which contains Xo is obtained,
we apply the piecewise linear control (see Benza-
ouia and Baddou, 1999) for the case N = 1, with
the rate of improvement � = 1

�
, so that we can

respect the �nal dynamics imposed on the system.

The homothetic expansion of the domain Do until
it contains the initial state Xo, leads us to look
for the maximal domain Dmax of the admissible
initial states, for which we can always �nd an
admissible control law allowing the stability of the
linear system with constraints. In this context two
procedures are proposed.

3.1 1 st procedure

According to the fact that the existence of maxi-
mal domain is related to the existence of the scalar
� in the interval ]0; 1[, we seek so that the matrix
Ho; according to remark 1, satis�es the following
inequality:

eHoU <�
"

�
U (15)

where 0<� < 1; and " > 0

and the correspending matrix H obtained from
(9) satis�es the conditioneH U < �"U (16)

Lemma 4. : For system (1), with matrix Fo solu-
tion of equation (7) there exists a scalar � 2]0; 1[
such that (15) and (16) are satis�ed.

Proof:

According to equation (9),

H = Ho + (� � 1)FoB implieseH U = eHoU + (1� �) eGU with G = �FoB:

Taking into account (15) ;eH U < �
"

�
U + (1� �) eGU

Thus, eH U < �"U if � "
�
U +(1��) eGU < �"U

this latter leads us to an equation of the 2nd order,
given by:

�2( eGU)j � �(( eGU)j + "Uj) + "Uj > 0 for any
j 2 f1; ::; 2mg;

having as solution:

)

8<:
�1 = 1

�2 =
"Uj

(gGU)j
< 1 ; if ( eGU)j > "Uj , then

� 2]0 ; min
j
(
"Uj

( eGUj)
)[

or well

)

8<: �1 =
"Uj

(gGU)j
> 1

�2 = 1

; if ( eGU)j � "Uj , then

� 2]0; 1[

Therefore 8j 2 f1; ::; 2mg;

� 2]0; min(1;min
j
(
"Uj

( eGU)j ))[ �

To �nd the maximal domain, we try to determine
the minimal value of the scalar � in the interval
]0; 1[ which gives the maximal domain of the initial
states where the condition (16) remains satis�ed.
In this case we propose the following algorithm:

Algorithm 1:

� step 1: for the matrix Ho chosen at the
beginning, we pose "

�
= s; and we seek the

maximal value of s > 0 for which eHoU �
�sU is satis�ed. The maximal value of s
is noted smax, in other words: 8 s > smax,eHoU � �sU:



� step 2: for smax found at step 1; the following
function is minimized :

min
0<�<1

�; such that 0 < s < smax and " = � s

under constraints:�
H = Ho + (� � 1)FoBeHU < �"U

(17)

the obtained � from step 2 generates the
maximal domain of the initial states

Dmax(�Fo; umin; umax):

3.2 2 st procedure

Let us choose Ho (according to remark 1) such as

eHo U < 0 (18)

We seek so that the matrix computed from (9)
checks the following condition :eH U < 0 (19)

Lemma 5. : For system (1) with matrix Fo solu-
tion of equation (7) there exists a scalar � 2]0; 1[
such that (18) and (19) are satis�ed.

Proof:

Using equation (9) we can writeeHU = eHoU + (1� �) eGU with G = �FoB:eHU < 0 if and only if eHoU + (1� �) eGU < 0

If eGU � 0 then 8 � 2]0 1[ we have eHU < 0

If there exists j 2 J = f1; :::; 2mg such that

( eGU)j > 0

then

� > max
j2J

(
( eHoU)j + ( eGU)j

( eGU)j ) = �3 (20)

two cases can arise:

* If �3 < 0, we are free to choose � in the interval
]0; 1[.

* If �3 > 0; then � 2]�3; 1[: �

To determine the maximal domain, we try to �nd
the minimal value of the scalar � in the interval
]0; 1[ which gives the maximal domain of the initial
states where the condition (19) is satis�ed.

- If �3 > 0; then Dmax = D(�3Fo; umin; umax)

such that: 8Xo 2 intDmax, there exists an admis-
sible control law u 2 
.

- If �3 < 0; then, the scalar �min which charac-
terize the maximal domain

Dmax = D(�minFo; umin; umax)

is obtained by the minimization of the function

: min
0<�<1

�, under the following constraints:�
H = Ho + (� � 1)FoBeH U < 0

Illustrative example

Let us consider the continuous-time system (1)
with:

A=

�
1 �2
0 0:45

�
; B =

�
1 0
0:5 1

�
;

Xo =
�
�0:2 0:8

�T

�(A) = f1; 0:45g

umin= [2:5; 3]T ; umax = [3; 2]T and

U = [3; 2; 2:5; 3]T

We hope to assign f�6; �5g as the spectrum of
the closed-loop. That is

Ho =

�
�6 0
0 �5

�
Using equation (7), we obtain

Fo =

�
�7:1857 2:3952
3:0358 �6:4619

�
the State Xo is de�ned outside the domain :

D(Fo; umin; umax) =
fx 2 Rn=� umin � Fox � umaxg

from (14), and according to lemma (3):

�1 = 0:5193

With � = 0:5193; the matrix H computed from
(9) is given by:

H =

�
�3:1215 �1:1514
0:0938 �1:8938

�
;

�(H) = f�3:0261; �1:9891g

and F = �Fo =

�
�3:7315 1:2438
1:5765 �3:3557

�
To determine the maximal domain of the initial
states, we apply each of the two procedures pro-
posed above.

1st procedure:



With the aim of determining Dmax; we apply the
algorithm 1, which gives the following result:eHoU � �5U ; with smax = 5

by minimization of the function f(�) = � under
constraints (17) we obtain as realizable solution
� = 0:2843.

Therefore, relative to the suggested methodDmax =
D(�Fo; umin; umax)

2nd procedure :

For our example ( eGU)j > 0 for any j 2 f1; :::; 2mg

Ful�ling (20) this implies

� > 0:2843

Therefore, for every Xo 2 intDmax; where � =
0:2843 there exists an admissible control law u 2

.

Remark 3

In the case of our example, whereXo = [�0:2 0:8]t,
the value of � = 0:5193 makes it possible to have
Xo on the boundary of the induced domain; on
the other hand, if we approach to the value 0:28,
the dynamics of the system becomes slower and
the state Xo does not belong to the border of
the induced polyhedral domain. Figure 1 and 2
illustrate the di�erence between two values of �:
a smaller domain is the initial domain, the full
feature correponds to � = 0:5193 and dotted line
to � = 0:2843.

4. CONCLUSION

In this paper we give another context of applica-
tion of the piecewise linear control , it is question
of maximal domain of the initial states from which
it is possible to guarantee the admissibility of the
trajectory with respect to the constraints. New re-
sults are obtained leading to built the maximal set
of initial admissible state and positive invariance.
An algorithm together with an example are also
presented.
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