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Abstract: This paper presents robust stabilization for an R/C helicopter whose degree
of freedom is reduced by fixing at a (joint) point. In our previous paper, we have
achieved stable control for the R/C helicopter using fuzzy model-based nonlinear
control. However, after simplifying the nonlinear dynamics, we have replaced the
simplified nonlinear dynamics with a Takagi-Sugeno fuzzy model. In this paper,
we design a robust fuzzy controller so as to compensate the modeling error for
the simplification. A robust stability condition achieveing good speed of response is
represented in terms of linear matrix inequalities (LMIs). By simultaneously solving
the condition and input constraint condition, we design a robust fuzzy controller
that achieves good speed of response with small control effort. The simulation and
experimental results illustrate the utility of this approach.
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1. INTRODUCTION

A lot of theoretical research on fuzzy model-
based nonlinear control has been reported. How-
ever, there are a few studies of practical applica-
tions (Tanaka et al., 1998a; Tanaka et al., 1999)
for the control. We have reported stable control
for an R/C helicopter whose degree of freedom
is reduced by fixing at a (joint) point (Tanaka
and Ohtake, 2001) to discuss the applicability of
fuzzy model-based nonlinear control. On the other
hand, there are several excellent works on fuzzy
control of unmanned helicopter by Sugeno and
his group (Sugeno et al., 1995; Sugeno, 1999).
However, these papers do not address guarantee of

the stability of the control system. In (Tanaka and
Ohtake, 2001), we have designed a fuzzy controller
guaranteeing not only stability but also both de-
cay rate and constraints on each control input
for the R/C helicopter. However, after simplifying
the nonlinear dynamics, we have replaced the sim-
plified nonlinear dynamics with a Takagi-Sugeno
fuzzy model in the previous papers (Tanaka and
Ohtake, 2001).

In this paper, we design a robust fuzzy controller
so as to compensate the modeling error for the
simplification. A robust stability condition with
good speed of response is represented in terms of
linear matrix inequalities (LMIs). By simultane-

Copyright © 2002 IFAC
15th Triennial World Congress, Barcelona, Spain



Fig. 1. R/C Helicopter.
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Fig. 2. Helicopter model fixed at a joint point.
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Fig. 3. Helicopter with four propellers.

ously solving the condition and input constraint
condition, we design a robust fuzzy controller that
achieves good speed of response with small control
effort. The simulation and experimental results
illustrate the utility of this approach.

2. DYNAMICS OF R/C HELICOPTER

Figure 1 shows an R/C helicopter whose degree
of freedom is reduced by fixing at a (joint) point.
Figures 2 and 3 show the R/C helicopter model.
The equations of motion (Tanaka and Ohtake,
2001) for the R/C helicopter which is fixed at a
joint point are

Me2γ̈(t) + Iγ γ̈(t)−Mge sin γ(t)

= F1(t)
√

l21 + e2 cos
(
tan−1 e

l1

)

−F3(t)
√

l21 + e2 cos
(
tan−1 e

l1

)
, (1)

Me2β̈(t) + Iβ β̈(t)−Mge sinβ(t)

=−F2(t)
√

l22 + e2 cos
(
tan−1 e

l2

)

+F4(t)
√

l22 + e2 cos
(
tan−1 e

l2

)
, (2)

(Iα + 4I1) α̈(t)

= I1

(
θ̈1(t)− θ̈2(t) + θ̈3(t)− θ̈4(t)

)
, (3)

where γ(t), β(t) and α(t) are the angles of roll,
pitch and yaw, respectively. M is the mass of
the helicopter. Iγ , Iβ and Iα are the moments of
inertia around x, y and z-axes with respect to
the gravity point of the helicopter, respectively.
I1 is the moment of inertia of a propeller. g is
the gravity constant and e, l1 and l2 are lengths
shown in Figures 2 and 3. Fi is the lift force
generated by the i th propeller. It is described
as

Fi(t) =
1
3
CLρSl

2
wθ̇i(t)2, (4)

where CL is the lift coefficient, ρ is the air density,
S is the area of a wing of each propeller, lw is the
length of a wing and θ̇i(t) is the i th propeller’s
angular velocity. We assume from the property of
the motors (of the propellers) that θ̇i(t) ≥ 0 for
all i. Consider that Θ̇0 is an equilibrium point
of the angular velocity and ∆θ̇i(t) is the change
of the i th propeller’s angular velocity around
Θ̇0. The relation among Θ̇0, ∆θ̇i(t) and θ̇i(t) is
given as θ̇i(t) = Θ̇0 + ∆θ̇i(t). By considering
some assumptions (Tanaka and Ohtake, 2001), the
following matrix representation is obtained.

ẋ(t) =




0 1 0 00
Cr sinx1(t)

x1(t)
0 0 00

0 0 0 10

0 0
Cp sinx3(t)

x3(t)
00

0 0 0 00




x(t)



+




0 0 0 0
Cur(2Θ̇0 + u2(t))
✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿

0 0 0

0 0 0 0
0 0 Cup(2Θ̇0 + u4(t))

✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿
0

0 Cuy 0 −Cuy




u(t),

(5)

where

x(t) =




x1(t)
x2(t)
x3(t)
x4(t)
x5(t)


 =




γ(t)
γ̇(t)
β(t)
β̇(t)
α(t)


 ,

u(t) =



u1(t)
u2(t)
u3(t)
u4(t)


 =




∆θ̇1(t)−∆θ̇3(t)
∆θ̇1(t) + ∆θ̇3(t)

−∆θ̇2(t) + ∆θ̇4(t)
∆θ̇2(t) + ∆θ̇4(t)


 .

Cr, Cp, Cur, Cup and Cuy are model constants.
In (Tanaka and Ohtake, 2001), we considered the
following assumptions.

2Θ̇0 + u2(t) � 2Θ̇0, 2Θ̇0 + u4(t) � 2Θ̇0.(6)

By simplifying the elements of the wavy lines in
(5) with (6), a Takagi-Sugeno fuzzy model was
constructed. In this paper, we design a robust
fuzzy controller so as to compensate the modeling
error for the simplification.

3. FUZZY MODEL WITH MODEL
UNCERTAINTY

Consider the following fuzzy model with uncertain
blocks.

ẋ(t) =
r∑

i=1

hi(z(t)) {(Ai + Dai∆ai(t)Eai)x(t)

+(Bi + Dbi∆bi(t)Ebi)u(t)} , (7)

where ‖∆ai(t)‖ ≤ 1
ρai

, ‖∆bi(t)‖ ≤ 1
ρbi

. ∆ai(t)
and ∆bi(t) are unknown uncertain blocks. We
assume that the upper bounds of these uncertain
blocks are known, i.e., ρai and ρbi are known. Dai,
Eai, Dbi and Ebi are known matrices to provide
the uncertain elements.

We simplify the elements of the wavy lines as well
as in (Tanaka and Ohtake, 2001). The uncertain
blocks are constructed so as to cover the modeling
errors for the simplification. A fuzzy model with
uncertain blocks is constructed as follows:

A1 =




0 1 0 0 0
Cr 0 0 0 0
0 0 0 1 0
0 0 Cp 0 0
0 0 0 0 0


 ,

A2 =




0 1 0 0 0
Cr 0 0 0 0
0 0 0 1 0

0 0
2Cp

π
0 0

0 0 0 0 0



,

A3 =




0 1 0 0 0
2Cr

π
0 0 0 0

0 0 0 1 0
0 0 Cp 0 0
0 0 0 0 0



,

A4 =




0 1 0 0 0
2Cr

π
0 0 0 0

0 0 0 1 0

0 0
2Cp

π
0 0

0 0 0 0 0



,

Bi =




0 0 0 0
2CurΘ̇0 0 0 0

0 0 0 0
0 0 2CupΘ̇0 0
0 Cuy 0 −Cuy


 ,

∆ai = Dai = Eai = 0,

∆bi =



u2(t) 0 0 0

0 0 0 0
0 0 u4(t) 0
0 0 0 0


 ,

Dbi =




0 0 0 0
Cur 0 0 0
0 0 0 0
0 0 Cup 0
0 0 0 0


 ,

Ebi = I4,

1
ρai

= 0,
1
ρbi

=
√

u2
2max + u2

4max,

i = 1, 2, 3, 4.

The membership functions are described as

h1(z(t)) = hr1(x1(t))× hp1(x3(t)),

h2(z(t)) = hr1(x1(t))× hp2(x3(t)),

h3(z(t)) = hr2(x1(t))× hp1(x3(t)),

h4(z(t)) = hr2(x1(t))× hp2(x3(t)),

where

hr1 (x1(t)) =




sinx1(t)− 2
πx1(t)

x1(t)− 2
πx1(t)

, x1(t) 	= 0,

1, otherwise.

hr2 (x1(t)) =




x1(t)− sinx1(t)
x1(t)− 2

πx1(t)
,x1(t) 	= 0,

0, otherwise.



hp1 (x3(t)) =




sinx3(t)− 2
πx3(t)

x3(t)− 2
πx3(t)

, x3(t) 	= 0,

1, otherwise.

hp2 (x3(t)) =




x3(t)− sinx3(t)
x3(t)− 2

πx3(t)
,x3(t) 	= 0,

0, otherwise.

u2max and u4max denote the maximum values
of |u2(t)| and |u4(t)|, respectively. These values
correspond to the saturations of actuators (,i.e.,
motors of the fans).

4. ROBUST FUZZY CONTROLLER DESIGN

To design a robust fuzzy controller for the fuzzy
model with uncertain blocks (7), the so-called
parallel distributed compensation (PDC) (Tanaka
and Wang, 2001) is employed.

Control Rule i

If z1(t) is Mi1 and · · · and zp(t) is Mip

then u(t) = −F ix(t), (8)

where i = 1, 2, · · · , r and r is the number of rules.
The overall fuzzy controller is represented by

u(t) = −
r∑

i=1

hi(z(t))F ix(t). (9)

The PDC fuzzy controller design is to determine
the local feedback gains F i in the consequent
parts. The feedback gains F i are determined by
solving the decay rate conditions guaranteeing
robust stability (Theorem 1) and constraints on
each control input (Theorem 2). Since they are
represented in terms of LMIs, the feedback gains
satisfying both of them can be numerically ob-
tained. That is, the design reduces to a numeri-
cally feasibility problem.

Theorem 1. The PDC controller that simultane-
ously satisfies both the robust stability condition
and the decay rate condition can be designed by
solving the following LMIs.

maximize
X ,M1, · · · ,Mr,Y 0,

da1, · · · , dar, db1, · · · , dbr

α

subject to

X > 0, Y 0 ≥ 0,

dai > 0, dbi > 0

Ŝii + (s− 1)Y 1 < 0 (10)

T̂ ij − 2Y 2 < 0, (11)

i < j s.t. hi ∩ hj 	= φ,

where

Ŝii =





L(Ai,Bi,X,M i)

+2αX + daiDaiD
T
ai

+dbiDbiD
T
bi


 ∗

EaiX −daiρ
2
aiI

−EbiM i 0

∗

0
−dbiρ

2
biI


 ,

T̂ ij =







L(Ai,Bi,X,M j)
+L(Aj ,Bj ,X,M i)
+4αX + daiDaiD

T
ai

+dbiDbiD
T
bi

+dajDajD
T
aj

+dbjDbjD
T
bj




∗

EaiX −daiρ
2
aiI

−EbiM j 0
EajX 0

−EbjM i 0

∗ ∗ ∗
0 0 0

−dbiρ
2
biI 0 0

0 −dajρ
2
ajI 0

0 0 −dbjρ
2
bjI


 ,

Y 1 = block − diag( Y 0 0 0 ),

Y 2 = block − diag( Y 0 0 0 0 0 ),

L(Ai,Bi,X,M j) = XAT
i + AiX

−BiM j − MT
j BT

i .

The symbol ∗ denotes the transposed elements
(matrices) for symmetric positions. s is the max-
imum number of fuzzy rules that fire simultane-
ously, where 1 < s ≤ r. The feedback gains are
obtained by F i = M iX

−1.

Remark 1 In the fuzzy model for the R/C
helicopter, ∆ai = Dai = Eai = 0, i.e., the
elements are zero. For this case, the size of the
LMIs (10) and (11) can be reduced. Therefore, for
this case, Theorem 1 can be simplified as follows:

maximize
X,M1, · · · ,Mr,
Y 0, db1, · · · , dbr

α

subject to
X > 0, Y 0 ≥ 0, dbi > 0,

Ŝii + (s− 1)Y 1 < 0

T̂ ij − 2Y 2 < 0,

i < j s.t. hi ∩ hj 	= φ,

where



Ŝii =




(L(Ai,Bi,X,M i)
+2αX + dbiDbiD

T
bi

)
∗

−EbiM i −dbiρ
2
biI


 ,

T̂ ij =







L(Ai,Bi,X,M j)
+L(Aj ,Bj ,X,M i)
+4αX + dbiDbiD

T
bi

+dbjDbjD
T
bj


 ∗

−EbiM j −dbiρ
2
biI

−EbjM i 0

∗

0
−dbjρ

2
bjI


 ,

Y 1 = block − diag( Y 0 0 ),

Y 2 = block − diag( Y 0 0 0 ).

Remark 2 The fuzzy model for the R/C heli-
copter also has common B, ρb, Db and Eb. There-
fore, for this case, Remark 1 can be simplified as
follows:

maximize
X ,M 1,···,M r ,db

α

subject to
X > 0, db > 0, Ŝii < 0, ∀i,

where

Ŝii =




(L(Ai,Bi,X,M i)
+2αX + dbDbD

T
b

)
∗

−EbM i −dbρ
2
bI


 .

Theorem 2. (Tanaka and Wang, 2001) Assume
that the initial state x(0) is known. The constraint
‖uj(t)‖2 ≤ µj is enforced at all times t ≥ 0 if the
LMIs [

1 xT (0)
x(0) X

]
≥ 0, (12)

[
X MT

i ET
j

EjM i µ2
jI

]
≥ 0 (13)

hold, where X = P−1, M i = F iX. Ej is the vec-
tor to determine which each input is constrained.
That is, uj(t) = Eju(t), where

Ej =
1 j − 1 j j + 1 m

[ 0 · · · 0 1 0 · · · 0 ] ,

for u(t) ∈ Rm.

5. SIMULATION

The model constants Cr, Cp, Cur , Cup and Cuy in
the fuzzy model (7) are set as follows:
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Fig. 4. Robust stability & Decay rate controller.
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Fig. 5. Decay rate controller.

Cr = 47.102 [1/s2], Cp = 36.191 [1/s2]
Cur = 5.011 × 10−4, Cup = 5.126 × 10−4

Cuy = 1.155 × 10−3.

θ̇i max = 2πf0 [rad/sec], θ̇i min = 0 [rad/sec] and
Θ̇0 = πf0 [rad/sec], where f0 = 30[Hz] which
is the maximum frequency of propellers. The
parameters on constraints on each control input
are set as follows:

E1 = [1 0 0 0] ,

E2 = [0 1 0 0] ,

E3 = [0 0 1 0] ,

E4 = [0 0 0 1] ,

µ1 = µ3 = 0.9 × 2πf0,

µ2 = µ4 = 0.1 × 2πf0.

Initial state is selected as

x(0) = [0.279 0 − 0.279 0 − 0.349]T .

The robust fuzzy controller is designed by simul-
taneously solving both the decay rate condition
guaranteeing robust stability (Theorem 1) and
constraints on each control input (Theorem 2).
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Fig. 6. Experimental result (time response).
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Fig. 7. Experimental result (photographs).

Figure 4 shows the simulation result by the con-
troller that satisfies the decay rate condition guar-
anteeing robust stability and constraints on each
control input. Figure 5 shows the simulation result
by the controller that satisfies the decay rate con-
dition and constraints on each control input. The
decay rate controller without the robust stability
condition does not realize good speed of response
due to the modeling errors.

6. EXPERIMENTAL RESULT

Figures 6 and 7 show the experimental result for
the real R/C helicopter. The designed controller
stabilizes the real R/C helicopter.

7. CONCLUSIONS

This paper has presented robust stabilization for
the R/C helicopter using fuzzy model-based non-
linear control. We have designed the robust fuzzy
controller guaranteeing robust stability and sat-
isfying the decay rate condition and constraints
on each control input. The simulation and exper-
imental result have illustrated the utility of this
approach. A future work is to achieve stable flight
for the R/C helicopter without fixing at a joint
point.
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