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1. INTRODUCTION

The singular system is a natural representation of
linear dynamical systems, it is a more general sys-
tem than the standard state-space system, so it
is very important to study an y property of sin-
gular systems (Dai,1989). H,, H., control prob-
lems for singular systems have been studied based
on model-matching (Tak aba and Katay ama, 1998)
and the J-spectral factorization (Morihira et al.,
1993; Takaba et al., 1994). In recent years, LMIs
ha ve widely been applied to sole the H,, con trol
problem for standard state-space systems (Iwasaki
and Skelton, 1994 ), and the mixed Hs/ Hoo etc.
multiobjective control design problems (Scherer et
al.,1997; Chilali and Gahinet, 1996). Since the cal-
culability of LMIs, such LMIs have been extended
to Hy control (Masubuchi et al., 1997; Rehm and
Augéwer, 1999; Ma et al., 2000) and robust H,
state feedback control (Takaba, 1998) for singular
systems, but for the mixed Hy/Hs, output feed-
back control of singular systems, there is few re-
search.

In this paper, the mixed Hs/H, output feedback
control for linear singular systems is considered in
terms of LMIs, the sufficient condition that the
problem is feasible is giv en. The paper is struc-
tured as follows: The necessary preliminaries and

the description of problem is given in Section 2.
In Section 3, the output feedback con trollers de-
sign and the sufficient condition based on LMIs
is giv en. Section 4 and Section 5 are example and
conclusions, respectively.

2. PRELIMINARIES

This paper considers a linear singular system

FEi: = Az + Byw + Byu

zo = Cox + Dgou (1)
z1 =Cixz+ Disu

Y = Cyx + Dyyw

where z € R"™ is the state variable, u € RP is
the control input, w € R? is the exogenous in-
put, zp € R*, z; € R™ is the con trolledoutput,
y € R!is the measured output. E € R"" is a
consant singular matrix, that is rankE = r < n.
Other coefficient matrices are appropriate dimen-
sion consant.

First, consider the following singular system
Ei = Az + Bw, z=Cuz, (2)

where z € R" is the state variable, w € RY is the
exogenous input, z € R™ is the controlled output,
E € R™*"™ is consant, and rankFE = r < n.



Definition 1 ( Masubuchi et al., 1997). A pair
(E,A) is said to be admissible, if it is regular,
impulse-free and stable.

Let G(s) = C(sE — A)~!B be the transfer func-
tion of the system (2) from w to z, then the H,
norm is defined by (Takaba and Katayama, 1998)

e = [ [~ e G a]

Lemma 1 ( Takaba, 1998). The singular system
(2) is admissible, and for given v > 0, the transfer
function G(s) satisfies ||G(s)|| < 7, if and only
if there exists a matrix X € R™*™ such that

XET =EXT >0, (3a)

81(77X7A;B)C) =

XAT + AXT xcT B
CX;T —~I 0 <0. (3b)
B 0 —I

Lemma 2 ( Takaba, 1998). If the singular system
(2) is admissible, and C = CE, then the H, norm
of the system (2) is given by

IG(s)ll = {TR(CEXTCT)}V2,
where X € R™ "™ is a constant matrix satisfying

EXT =XE", AX" + XA+ BB =0. (4)

Lemma 3. If there exists a matrix X, satisfying

EXT =Xx,ET >0, AXT + X, AT + BBT <0,
(5)
then, (1) (E, A) is admissible; (2) The inequality
EXT < EXT holds for any solution X of (4).

Lemma 4. If there exist matrices X, Z satisfy-
ing

EXT =XET >0, (6a)
T T
By(X, A, B) = { A XA B ] <0, (6b)

83(X7Z7E707M):
7 01" A CEXT 171 0
0 M XETCT EXT 0 M
>0, (6¢)

then the system (2) is admissible, and the H,
norm satisfies |G(s)||3 < Tr(Z), where C' and M
satisfy that C = CE, ImM = ImFE.

Proof. First, the admissibility of the system (2)
is obvious from (6a), (6b) and Lemma 3. Next

prove that ||G(s)||3 < Tr(Z). The singular-values
decomposition of E

=0
UEV = { 0 0 } ,
where U,V are orthogonal matrices, ¥, =
diag(o1,02,-+,0p), o5, @ = 1,2,---r are
singular-values of E. Accordingly, write
_ X1 Xo AT _ (A A
UXV_{XS XJ, CUT = (¢ 6,
from (6a) and (6b), it yields
X7 0] [ X3, 0
[ 0 _0]_[ o o)=Y
Uxv=| 0 X2l gax £0, 5,X7 >0,
0 X,

and by ImM = ImFE, it is obtained

C M

UM = 0

} . M, € R™", detM, # 0.

Consider (6¢), we get
r o 17[1 o0 zZ  CEXT
0 UM 0 U || XETCT EXT
T

|1 o0 I o0 ]_,
0 U| [0 UM ’

this is
I 0
I 0
[0 e 0]]RZ 0 {]‘gl] >0,
where

Z 13, XT 0

Rz=| x,%.CT x,XT 0|,
0 0 0
since M is nonsingular shows that
A T
Z o 012,,)% >0,
D.EPING ¥ X{

then Z — C1 2, XTCT > 0, i.e. CEXTCT < Z,
together with Lemma 2, Lemma 3, the conclusion
is obtained. m|

In this paper, the mixed Hs/Hs control prob-
lem for the linear singular system (1) is finding a
controller u = k(s)y such that

(1) the closed-loop system is impulse-free,
(2) the closed-loop system is stable,
(3) [ITesw(5) oo < 7. (7)
(4) ||T=9w(s)||2 is minimized
subject to these (1) -(3) constraints,

where T4, (s), Tyw(s) are the transfer functions
from w to z1, and w to zg, respectively, v > 0 is
given.



3. CONTROLLERS DESIGN

The realization form of the controller u = k(s)y is
assumed as follows:

Eyir = Agzr + Bry, u= Cyay, (8)
here, we design a rth-order controller for the sys-
tem (1), without loss of generality, let

E, =E, 9)
then closed-loop system formed by the controller
(8), (9) and the system (1) is

Ecit. = Az + Bew, 20 = Cooe, 21 = Cere,
(10)
where z, = [z1, 2T, and

[E [ A4 By
EC - |: E :| Y AC - |: BkCZ Ak: :| I
_| B _
Bc - |: Bkl)21 :| ) C1c0 - [ CO DOQCk ] )
Cer = [ C1  D12C ]

(11)

In order to consider the closed-loop system (10),
make the following assumption for the system (1):

Assumption 1. In the system (1), Cp = CoE.

From Lemma 1, Lemma 4, if

Cu = C.E,, (12)
and there exist X, € R2"*?" 7 € R®** satisfying
X.El =EX] >0, (13a)
Bl(rYﬂXCaAC:BCaCCl) < 07 (13b)
BQ(XcaAcaBC) < 07 (130)
BB(XcazyEcyécaMc) > 0) (13d)

where
ImM, =ImE,, (13e)

then the closed-loop system (10) satisfies (1)-(3) in
(7), and ||Tsywl|3 < Tr(Z), ie. the mixed Ha/Hy,
control problem for the system (1) is feasible.

From (13b), X, is a nonsingular matrix, when X,
is partitioned as

_ X X nxn
XC_|:X3 X4j|’ XER R (14)
X; € R™", i =12,3,4,

without loss of generality, we can assume that
X, X2, X3 in (14) are nonsingular. If not, then
make some modification ( Ma et al., 2000; Masub-
uchi et al., 1997). Define matrices

I 0 I 0
T1—|:0 XX?,_I}’TZ_[O X{lX}’
T
Ty=| 0 I, 0 ’T“:H; H
0 0 I, '1

(15)

X X

Xc = T1XCT2 = |: X XX?)_IX4X2_1X :| ) (16)

XX;'EXTXT ]

(130) | B
= [ B ] , (17a)
. [ A By
AC — TIACTQ —_— |: Bk02 Ak :| ) (17b)
= L B1
Bc — Tch - |: BkD21 :| ’ (176)

Cci = OciTQ_T = [ Cz Dz2c_’k ] ; i = 07 ]->
(17d)
where

{ Ap = XX A XTX T, (17¢)

By =XX;'By, Cp =, XIx-T.

Since the closed-loop system (E., A., B., C.;) and
(E., A, B.,C:;), i = 0,1 have the same transfer
functions, and by (12), (15), (17), (13), it is known
that

; Ceoly . = CeEc Ty 18
= CchilEC = CCEC’ CC = CCTlil’ ( a)
X.ET = I\ (X.ET)T{ (18b)
= TW(EXDTT = E.XT >0,
Bi(v,X., A, Be, Cr) (18¢)

= TBBI(’Y)XC)ACﬂBC)CCl)T?)T < 0’

82()_(0’ Ac: Bc) = T4B2(Xm Ac: BC)T4T < 07
(184)
B3(X.,Z,E.,C.,M.) >0, (18¢)

((18¢) is derived by manipulations for (13d)
similar to (28¢) in the following, omitted),
so the closed-loop system (E., A, B.,C.;) and
(E., A, B.,C.), i = 0,1 satisfy (7) simultaneity.
Note that

I 0 X X, I -X1X,
-X3X v T X3 Xy 0 I

X 0
= [ 0 Xi— XsX X, } 19
so Xy — X3 X' X, is nonsingular. Let
XX XXX - X =
~1 ~1 -1 1 (20)
XXXy — XX~ X)X 1X = 871,
then X, can be written as
- X X
XC_[X Sl+X}' (21)
Set
Yi=5+x714 (22)



by (21), (22) yields

ST

X t= s g (23)

C
Compared the parameter matrices of the closed-
loop system (FE.,A.,B.,C.) with that of
(E., A¢, B, C), i = 0,1, the difference is only be-
tween the controller parameters Ay, By, Cp and
Ak, By, Ck. So, without loss of generality, E.,
Ac> Bc; C1c07 Ccl; Ak; Bk; Ok: and Xc in (10)7 (8)
and (14) can be look as E., A., B., Ce, Ce1, Ay,
By, C) and X, in (17) and (21). In the following
discussion is as so.

Set
YT -8 } [ T, 0 }
T = ,T = )
i [ I 0 ! 0 I
T, 0 0 (24)
Te=| 0 I, 0 |,
0 0 I,
then
TsX EITS = TsEXIT] >0, (25a)
TsB1(7y, Xe, Aey B, Co)TE < 0, (25b)
T7BZ (XC7AC7 Bc: )T’;T < 07 (256)

7 01 71 o0
Lo an ) Lo om ]

25d
0 I 0 >0 (25d)
0 7,7 || 0 M. ’
Z C.E.XTTT
= A ¢ . 2
Qz { Ty X.ETCT T,EXTTT (25¢)
Make the singular-values decomposition of E
¥ 0
UEV—{O 0}, (26)
accordingly, write
= A A
A=UAV =
[ Az As } ’
o _ | Bu
B, =UB, = { Bl },
B, =UB, = { B } : (27)
By
Co = C()UT = |:001 C’02] )
C1 =0V =[Cn Ci2],
[ O =CoV =[Co1 COa].

For the mixed H»/H, control design of the sys-
tem (1), we have

Theorem 1. Assume that Assumption 1 holds,
then the mixed H,/Hy, control problem for the
system (1) is feasible, if there exist matrices Xy,
YO; XZ; X4; Y37 1f47 Z) L) WB; Kl; WC21> WC22>

T
and Xy, Y; Y
4

the following LMIs

are nonsingular, such that

Ry L CT BRs
LT R, Ry B

Q_'l F:gz“ _7[ 0 <0, (28&)
RY BT 0 —yI
RL R
L™ R, B | <0, (28b)
RY BY I
Z  Cul, Bs |
2Ch Yo % | >0, (28¢)
LR s %

hold. Where
Ry = ATV + VT4 CWE —WnC,
Ry = XAT + AXT + W{ B3 + ByWo,
R3 =YTB, —WgDsy, Ry = XCT + WEDL,
Rs = Co1Xo + D2 K1,

) ) (29a)
X=UXV = XU?T §j }
Y =UYV = [ ErYsyo 194 ] ’ (290)
WC =P V;{CIZI WSZZ

[ Do2P=[ Do 0],

where P is a nonsingular matrix, Doy has full col-
umn rank,

Wg =SB, We =CpX7,
L=YTAXT + YTB,W¢ (29¢)
—WBCQXT — SAkXT + AT,
Wg =VIWg, We =WeUY, L=VTLUT.
(29d)

Proof. By Lemma 1, Lemma 4 it is known that
if (12), (13) hold, then the mixed H>/H, control
problem for the system (1) is feasible. By the
former discussion, (13) is equivalent to (25), so it
only need to prove that (12), (25) are equivalent
to (28). First, by (25a), (25b) yields

ORIV Eg

YT 1 E 0 (30)
:{I XHO ET}ZO’
YT 1 .
and X ,{ I X } are nonsingular, let
s 0 0
T 8
Tszm H,ng 0 In 0 |,
0 0 I,
Ts O
T10_|: 0 Iq )



X =UXV = ? ?]

Y3Y4 (31b)
v _ 1 2
V=UYV=| YJ,

pre- and postmultiply the inequality (30) by Tj
T
and T¢, respectively, using X, { 7 )I( are

nonsingular, this yields

Y, ©
{Zi XS}>0, X;=0, =0, (320a)

detXs 20, det| 0 L] 20 (3)
4 ) I X4 )

where

X() = Xlzr, YE) = E’I‘Yl' (326)

Pre- and postmultiply the inequality (25b) by Ty
and T, respectively, carrying out (29¢), (29d),
and (32a), (32¢), this yields the LMI (28a); Pre-
and postmultiply the inequality (25¢) by T1o and
T, respectively, the LMI (28b) is obtained simi-
larly.

Next, consider the form of the matrix W¢. Since
(12) and Assumption 1 hold, C. can be written as
CC = [ CO Ck ], then by

A A E
[ Co DoxCr | =1 Co Ck]{ E}’
it yields
Dy Cy, = CrE. (33)
Postmultiply (33) by X7, then
= Doo PP~ 'W¢ 2 [Doz 0]P~'We¢
— o BExT'Y ¢ X BT, (34)

Do We

where Dy,, P are shown as (29b). Set

Wea
We =P 35
C WCQ ) ( )
from (35) yields
DosWey = ChXET. (36)

Write No = KerE”, then Doy We1No = 0, since
Dy> has full column rank, W1 Ny = 0, namely
KerET C KerWe, this is

Wer = We ET. (37)
Thus,
We1 =W VVTETUTU
[k K ]H) 8}U
=[ K% 0]0, (38)

where WiV = [ K, K, ] Synthesize (35),

(?)8), and let WogUT = [W021 WCQz], K1 =
KX, then
K, 0
We =P U, 39
© Wear Weas (39)

i.e. W has the form (29b).

Last, consider the equivalence of the inequality
(25d) and (28¢). Since Assumption 1 and (12)
hold, it follows that

N A
| |

RY E EXT
(40)
where .
Rs = CoEXT + Do, We, (41)
by (13e) yields
Y U T T T
Mc = U MC = [Mcl 0 M02 0]
M. € R™*?" M.y € R™*?", det { %C; ] #0.
(42)
Set

A |

by (22), (30), it yields ES~T = S~1ET | then

S, 0]

S: S, (44)

vIs—TyT — {

together with (31b), (32a), (42), it follows that

0
—S51 Mo
* , (45)
M + Y151 M
%

Tll =

OO OO N

where * expresses the needless matrix blocks.
Write

T _|: _51M62 j|
27| Mo 4+ Y181 Moo (46)
10 =5 My

-7 ws ]

obviously, Tis is nonsingular. Thus, by (40),
(43),(45), (46), it follows that inequality (25d) is
equivalent to

I 1 1
g e[ [T oy
Z  CnX, Ry 7
60 Y, n, [
RT Y Xo

=
(V)
Vv
=




where Rj is shown as (29a), since T}, is nonsin-
gular shows that (28¢) holds. It is evident that
the inequality (28¢) contains the inequality (32a),
synthesize the above discussion, the conclusion of
Theorem is obtained.

Theorem 1 is LMIs with constraints, the mixed
H,/H,, controller for the system (1) can be ob-
tained by the following

(1) Solve LMIs (28) to obtain Xy, Yy, Xo, X4,
Y;, Yy, Z, [_/, WB, Ky, Weor, Weao, such that
Tr(Z) is minimum, for a given v > 0.

T
(2) If Xy, Y are nonsingular, find S
I X,
by (22), and find Ay, By, Ci by (29).
yI I
(3) If Xy, 4 are singular, take a
I Xy

scalar o small enough such that Xy = X4 +al,
I — XY are nonsingular, and also satisfies (28).
(4) If the controller formed by the obove
(E, Ay, By, Cy) is impulse-free, then the controller
guarantees that the closed-loop system (10) satis-
fies (7). If it is nonimpulse-free, then based on the
singular-values decomposition of E

X, 0

— T T
E =T 0 0 vV,
1 i (48)
4, = uT|4an A }VT
Ao1 Ax ’

where A, is singular, similar to Masubuchi et al.
(1997), take p is a scalar small enough such that

Az +pl is nonsingular and not to invalidate (13b),
(13c¢).

4. EXAMPLE
Consider the linear singular system
1 00 3 3 0
E=(000|,A=| -15 -1 1],
0 0 0 -1 0 0
1 0 1
Bi=|0], Ba=|1 01,
1 1 -2
05 0 0 0 0
CO - |: 0 0 0 :| ) D02 — |: 1 0 :| )
Ci=[02 02 0], Dipo=[-1 1],

Let v = 1, and solve the LMIs (28), then the con-
troller matrices

—7.2299 9.2077  0.5887
Ap = —2.0594 -1.0126 1.0000 |,
27821 —-0.3397 -0.1551

By =[ —1.4952 0.0024 0.2008 ],

| —0.5625 0 0

Cr = —2.1718 —0.3323 0.0775

are obtained by (29¢), the controller guarantees
that the closed-loop system is impulse-free, and
stable, [| Ty wlloo < 1, |Teowll2 < 1.415.

5. CONCLUSIONS

In this paper, the mixed Hs/H, output feedback
control problem for linear singular systems is dis-
cussed, the sufficient condition that the problem
is feasible is given in terms of LMIs.
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