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Abstract: This paper covers modeling and identification of one joint of an industrial robot
manipulator including flexibilities. It is shown how models can be built in the Modelica
graphical environment and how these models can be transformed into a mathematical
state space description which directly can be used for identification. A motivation to use
linear models for modeling of the robot arm is given. This includes an analysis of the
nonlinearities in the input/output data from the actual robot using a special kind of input
signal. Identification and validation of the physically parameterized models are also covered.
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1. INTRODUCTION

In this paper a number of approaches to modeling and
identification of one joint of a classical robot manipu-
lator is presented. There are two major contributions
in the paper. The first is to use special odd multi-
sine signals as input signals to the system. This gives
the possibility to analyze the linearity of the system.
With this input signal, dynamics are also found that
were not found using a chirp input signal, compare
e.g., (̈Ostring et al., 2001). The second contribution
is to show how modern mathematical tools can be
used to easily construct a physical model, e.g., in a
graphical environment. From this model a mathemat-
ical description can be found and as a last step this
description is transformed into a form that can be used
for identification. The tools that will be used are, apart
from classical mechanics, the System Identification
Toolbox (Ljung, 2000) for Matlab and the newly de-
veloped MathModelica software tool (Jirstrand, 2000)

1 This work was supported by ISIS and ERNSI at Link¨opings
universitet.

from MathCore. MathModelica is an extension to
Mathematica (Wolfram, 1999) and implements the
Modelica (Modelica Association, 2000; Tiller, 2001)
standard for modeling and it also gives the possibility
to use the powerful mathematical capabilities of Math-
ematica to derive, for example, a state space descrip-
tion for a mechanical system from a Modelica model.

From an industrial perspective, modeling and identi-
fication of industrial manipulators is becoming more
and more important. In the competition of consumers,
that is present today on the robot market, the price and
performance issues are essential. In order to reduce
price but still keep (or increase) the performance, a
more light robot structure is a tempting possibility.
Making this step will also reduce the rigidity of the
structure, which means that good models for control
will be even more important.
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2. THE PROCESS

This section gives an overview of the physical system
used in the identification experiments. A picture of
the manipulator is shown in Figure 1. It has 6 degrees
of freedom, but we will in this paper only model the
motion at axis 1.

Fig. 1. The IRB1400 industrial robot from ABB used
in the identification experiments.

The robot is a commercial robot with a commercial
control system. This means, among other things, that
the controller cannot be altered in any major way and
the actual implementation cannot be assumed to be
known. The structure of the robot system is depicted
in Figure 2. It is only possible to directly affect the
reference signal,θref . The torque,u, generated by
the electrical motor is affected only indirectly by the
feedback control system.

θref

Controller Robot
u θm

Fig. 2. Block diagram of the robot.

In the experiments the reference signal,θref , and the
torque reference from the controller,u, are measured
together with the angle of the motor driving the robot
arm,θm. The sampling interval is 0.5 ms. An electrical
motor drive the joint and the gear-box. The motor
contains in itself a fast controller loop to maintain the
desired torque. The goal is to identify a model of the
robot by usingu as input (the torque reference), and
θm as output (measured motor angle).

3. MOTIVATION OF A LINEAR MODEL

Although considering only one joint, the manipula-
tor clearly contains quite a few nonlinear elements,
e.g., backlash, stiction, and saturation. The different
nonlinearities can roughly be divided into two main
groups; those whose influence decrease when the in-
put amplitude decreases (e.g., saturations and poly-
nomial gains), and those whose nonlinear influence
increase when the input amplitude decreases (e.g., re-
lays, dead zones, backlashes). The dominating non-
linearities in the manipulator, backlash and stiction,

are of the second kind. It is possible to show that
the nonlinearities that decrease with decreasing input
amplitude actually are negligible using the methods
described in (Pintelon and Schoukens, 2001, Chapter
3). Let us consider nonlinearities that can be described
by a series expansion around the operating region.
When the input amplitude decreases, the linear term
will be dominating over the higher order terms.

To actually show that the effect of this class of nonlin-
earities is small in the manipulator an input consisting
of a sum of sinusoids is constructed,

u(t) =
n∑
k=1

Ak sin(2πfkt+ φk). (1)

If this input is fed through a nonlinear element, say
(·)m, the output will consist of frequencies

f̃k = fi1 ± fi2 ± · · · ± fim , (2)

where

ij ∈ {1, 2, . . . , n}, j = 1, . . . ,m. (3)

Now the frequenciesf1, . . . , fn can be chosen in
many different ways. One popular choice is the so
calledspecial odd multisine(Pintelon and Schoukens,
2001, Chapter 3)

f1 = f0, f2 = 3f0, f3 = 9f0, . . . , fn = Ff0, (4)

wherefn = Ff0 is the highest frequency chosen. (In
Matlab-like notation this would be[1 : 8 : F ]

⋃
[3 :

8 : F ]). The frequencies showing up at even multiples
of f0 and of the non-used odd multiples off0 would
originate from the type of nonlinearities considered
here. The choice of phases,φk, is of less importance
for this application, but should be chosen with care in
other situations, see (Pintelon and Schoukens, 2001,
Chapter 3).
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Fig. 3. Results from an experiment with a sum of
sinusoids as reference. Bottom - reference (θref )
amplitudes. Middle - input (u) amplitudes. Top -
output (θm) amplitudes.+ - excited frequencies.
× - odd frequencies.◦ - even frequencies.

In the experiment performed on the manipulator a
reference signal consisting of a sum of 76 sinusoids,



with f0 = 0.4Hz and fn = 121.6Hz, is chosen.
The amplitudes are picked so that they follow the
amplitudes of a Butterworth filter of order 1 with
cut off frequency at 50Hz. The phases are uniformly
distributed between 0 and2π (which is a typical
choice). The length of the experiment was 9.5 s, where
the first 2 s were assumed to be transients and the
remaining 7.5 s were used to see the results from 3
periods of the sinusoids (3 full periods of the lowest
frequency). The sampling interval was 4 ms.

The resulting amplitudes of the reference, the input,
and the output are shown in Figure 3. The ampli-
tudes are averaged over the 3 periods, to reduce the
influence of noise. From these plots it follows that
the amplitudes of the overtones inu andθm are very
low, actually about a factor1/100 compared to the
excited frequencies. This confirms the statement that
these type of nonlinearities have very little influence in
the robot system. Also note that, due to the regulator,
very little input energy is found below 10Hz. This will
cause large uncertainties in the estimated models in
this frequency range.

4. MODELING

4.1 MathModelica

Modelica is a standardized modeling language (see
(Modelica Association, 2000)) but it does not in-
clude analysis and simulation capabilities. For this
purpose MathModelica (Jirstrand, 2000) has been cre-
ated. MathModelica is an add-on to Mathematica
(Wolfram, 1999). It implements the Modelica standard
and gives the possibility to manipulate the equations in
the model using Mathematica. This will be explored
later on in the paper. Using the Dymola engine, Math-
Modelica also provides simulation capabilities. Within
Modelica a number of standard model components
exist. This includes components for modeling of me-
chanical systems as well as electrical systems. In this
paper the former libraries are used.

4.2 Physical model

The work in this paper is restricted to modeling of one
joint of the industrial robot. The model includes the
gear box and the robot arm. The model explains how
the torque applied to the gear box affects the angle
of the motor and the arm. The controller of current
in the electrical motor is neglected and the torque
reference to the motor is considered to be the actual
torque applied to the system.

The robot arm can be modeled using different levels
of approximation. A first approximation could be to
assume that the arm is stiff and acts as a rigid structure.
In a robot having gear boxes this is a rough approxi-
mation. Modeling the gear box as a spring coupling

two masses gives a more accurate model. If the robot
is moving fast the robot arm cannot be assumed to be
stiff. This makes it reasonable to use at least a three-
mass flexible model to describe the system.

The notations regarding the physical modeling of the
three-mass model in this paper can be seen in Table 1.
The friction is modeled as a viscous friction acting on
the motor of the robot.

Table 1. Notations.

θm motor angle
θa1, θa2 arm angle
fm friction coefficient of the motor
kg , ka spring constants
dg , da damping coefficients in the springs
Jm moment of inertia of the motor
Ja1, Ja2 moment of inertia of the first and the second

part of the arm
τ motor torque
r gear box ratio (1

118
)

4.3 Generation of the physically parameterized models

In Figure 4 the Modelica implementation of the three
mass and the four mass model is shown. This section
describes the generation of the equations for the three
mass model from the graphical representation. The
four mass model is generated in a similar way.

From the graphical description of the system in Fig-
ure 4 it is possible to make a simulation using the
MathModelica (Jirstrand, 2000) environment. This
gives a simulated model with 6 continuous states.
By directly taking the number of states from the
Modelica model, using the MathModelica command
GetFlatStateVariables[ThreeMM] , a total of 9 states
are found. The difference in the number of states
comes from the fact that the different sub-models
are modeled individually and when they are inter-
connected it is possible to reduce the total number
of states. In Mathematica, using MathModelica, the
equations describing the three mass system can be
found usingGetFlatEquations[ThreeMM] . It results
in 55 equations. Many are trivial, e.g., saying that the
angular velocity on one edge of a component equals
the angular velocity of the connecting edge of the next
component.

The trivial equations can be removed easily in Math-
ematica usingEliminate[eqs,list] whereeqs are
the equations coming from the Modelica description
andlist is a list of the variables that should be elim-
inated. The result from this step is that the number of
equations are reduced from 55 to 6. In the current ver-
sion of MathModelica the list of variables to eliminate
must be found by hand.

After this step it is also necessary to find and replace
some state variables that could be expressed as func-
tions of other state variables. For the three mass model
this includes the spring damper components where the
relative angular position between the two connections



Fig. 4. The Modelica model used to derive the state space models of the mechanical system. The extension from
the three mass model to the four mass model is shown as a dashed connection.

becomes a state variable. These two variables are re-
placed byθa1 − θmr andθa2 − θa1, respectively.

The next step is to introduce the state variables,x1 to
x5. For the three mass model described here they are
given by

x1 = θmr − θa1, x2 = θa1 − θa2,

x3 = θ̇m, x4 = θ̇a1, x5 = θ̇a2

(5)

For Mathematica to be able to solve the equations
it is also necessary to include the time derivative
of the state variables among the equations added
to the 6 equations found above. This step is done
with the commandJoin[list1,list2] in Mathe-
matica.Solve[eqs,{x1’,x2’,x3’,x4’,x5’}] finally
gives the state equations for the three mass model in a
closed form.

The state space description of the three mass model
from Mathematica becomes

A =


0 0 r −1 0
0 0 0 1 −1
−kgrJm 0 − fm+dgr

2

Jm

dgr
Jm

0
kg
Ja1

− ka
Ja1

dgr
Ja1

− dg+daJa1

da
Ja1

0 ka
Ja2

0 da
Ja2

− da
Ja2


B =

(
0 0 1

Jm
0 0
)T

(6)

C =
(
0 0 1 0 0

)

Output from this model is the angular velocity of the
motor. If the angular position is chosen as output the
number of states becomes 6 since an extra integrator
has to be added. This equals the number of states in
the simulation model in MathModelica.

The four mass model with the extra parallel mass
according to Figure 4 is found in a similar way. In ad-
dition to parameters and variables in Table 1, the extra
parameters areJp, kp, anddp and the extra variable is
θp. The state space model from Mathematica, where

a44 = − fm+dgr
2

Jm
anda55 = − dg+da+dp

Ja1
, becomes

A =



0 0 0 r −1 0 0
0 0 0 0 1 −1 0
0 0 0 0 1 0 −1
−kgr
Jm

0 0 a44
dgr
Jm

0 0
kg
Ja1

− ka
Ja1
− kp
Ja1

dgr
Ja1

a55
da
Ja1

dp
Ja1

0 ka
Ja2

0 0 da
Ja2
− da
Ja2

0
0 0 kp

Jp
0 dp

Jp
0 − dp

Jp


B =

(
0 0 0 1

Jm
0 0 0

)T
(7)

C =
(
0 0 0 1 0 0 0

)
The states are chosen as

x1 = θmr − θa1, x2 = θa1 − θa2,

x3 = θa1 − θp, x4 = θ̇m,

x5 = θ̇a1, x6 = θ̇a2, x7 = θ̇p

(8)

Hereθ̇m is picked as output. With the angular position
as output,θm, the number of states becomes 8.

The models in (6) and (7) are symbolically represented
in Mathematica and this makes it very easy to repa-
rameterize and scale the parameters. After this step the
model description is saved in a text file. This file can
then be transformed, using a simple Matlab program,
into an m-file (Matlab script-file) that can be used
directly by the System Identification Toolbox. Using
these tools the modeling to identification process be-
comes straight-forward and nearly automatic.

5. SYSTEM IDENTIFICATION

The aim of this section is not to give an extensive
introduction to system identification, the interested
reader is instead referred to, for example, (Ljung,
1999). Some important features will however be dis-
cussed.

In this application the identification of the flexible
robot is performed under strong feedback. The main
problem with identification from closed loop data is
that the data contain less information about the open
loop system. The reason for this is that the purpose of
the feedback is to make the closed loop system less
sensitive to changes in the open loop system. Another
problem that can occur is bias due to inaccurate noise
models, see below. The identification is made using
the System Identification Toolbox (Ljung, 2000) in
Matlab.



In this contribution the focus is on state space models
(with state vectorx(t)), parameterized as either pure
black-box models in discrete time, i.e.,

x(t+ 1) = A(θ)x(t) +B(θ)u(t) +K(θ)e(t)
y(t) = C(θ)x(t) + e(t), (9)

or as physically parameterized models in continuous
time, i.e.,

ẋ(t) = F (θ)x(t) +G(θ)u(t)
y(t) = C(θ)x(t) + v(t). (10)

The conversion from continuous time to discrete time
is typically performed using the assumption that the
input is constant over the sampling intervalTs, see
(Ljung, 2000, page 94)

x(t+ 1) = AT (θ)x(t) +BT (θ)u(t)
y(t) = C(θ)x(t) + v(t), (11)

AT (θ) = eF (θ)Ts , (12)

BT (θ) =
∫ Ts

t=0

eF (θ)τG(θ) dτ (13)

These models are estimated by minimizing the sum of
the squared prediction errors. For (11) this becomes

θ̂ = arg min
θ

1
N

N∑
t=1

ε2(t, θ) (14)

ε(t, θ) = y(t)− ŷ(t|θ) (15)

= y(t)− C(θ)(qI −AT (θ))−1BT (θ)u(t)

Hereq is the discrete time shift operator, i.e.,qu(t) =
u(t+ 1). As the number of data increases the estimate
will converge to the true system, assuming that the
model class can describe the underlying system and
that the noise model is correct. If the noise model is
incorrect a slight bias will be achieved (depending on
the mismatch). If, however, the noise to signal ratio
is small, the bias will also be small. As a matter of
fact this is the case for the studied manipulator. This is
somewhat implicitly stated in (Norrl¨of, 2000, Chapter
7). For the exact expression of the limiting estimate,
see for example (Forssell and Ljung, 1999).

One important question to answer when modeling and
performing identification is whether or not the model
describes the true system in a good way. To answer
this question one typically does a number of validation
tests, see (Ljung, 2000, Chapter 16). Two types of
validation tests will be used in this paper. The first test
is based on the fact that a high order model is able
to describe any linear system arbitrarily well, if the
model order is chosen high enough, see (Ljung, 2000,
Chapter 10). This means that the estimated physically
parameterized models can be validated against a high
order model in the frequency domain. In this way it is
possible to judge whether or not the model has picked
up some important aspects of the system dynamics.
The second test that will be used is cross validation,
i.e., the model is simulated on new data and the simu-
lated output,ysim(t) is compared with the output from

the system,y(t). A measure of the cross validation
performance is how many percent of the output that
is explained by the model, i.e.,

FIT = 100 · Var(y(t)− ysim(t))
Var y(t)

. (16)

6. EXPERIMENTS

This section describes the identification experiments
performed on the manipulator. The parameters of the
models (6) and (7) are estimated together with a high
order state space model. The excitation of the robot is
performed according to the description in Section 2.

For identification and cross validation, two different
reference signals were used. The identification was
performed using one period of a special odd multisine
and the validation was performed using a Gaussian
white noise sequence, both having the same variance
and frequency content, cf. Section 3. The length of the
signals was 7.5 s and the sampling interval was 0.5 ms.
Since the sampling interval is rather short compared
to the bandwidth of the system a down-sampling of a
factor 10 was performed. From the estimation data an
11th order black-box state space model was estimated
together with the physically parameterized three and
four mass models. The results are depicted in Figures
5 and 6. Clearly the three mass model does not give
a full description of the manipulator. However, by
increasing the complexity of the model, going to a four
mass model structure, the two notches in the region
15-20 Hz can be picked up reasonably well. The 11th
order black-box model is the lowest order black-box
model that finds the double notch around 17 Hz and
this is the reason why this model has been chosen for
comparison.
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Fig. 5. Solid line -11th order black box state space
model. Dashed line - physically parameterized 3
mass model (6 states).

The fit for these three models on estimation and val-
idation data is summarized in Table 2. Clearly the
physically parameterized models do not perform as
good as the 11th order black-box model in simulation.
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Fig. 6. Solid line -11th order black box state space
model. Dashed line - physically parameterized 4
mass model (8 states).

However, the physically parameterized models con-
tribute with more knowledge about the manipulator,
since each parameter and state space variable is inter-
pretable as some (in most cases) known physical fact
about the system. To get a even better description, the
manipulator must be modeled further, maybe by in-
cluding yet another mass which should describe better
the physical link structure of the arm. The main dis-
advantage in using a physical description of the model
is that the initialization of totally unknown parameters
may be very difficult and one might therefore get stuck
in a local minima in the search of the optimal estimate.

Table 2. Fit for the three estimated models
on estimation and validation data.

Data Set 11th order 3 mass 4 mass
Est. data 74.8 57.8 58.0
Val. data 73.0 56.2 53.6

7. CONCLUSIONS

The paper gives a full treatment of the procedure to
go from a physical system, via a physical model, to
a mathematical model that can be transformed into a
form that can be used for identification. The choice of
linear models to describe the dynamics of the system
is also motivated by doing an experiment using an
input signal of special odd multisine type. The process
of going from modeling to parameter estimation is
highly automated and it is shown how modern mathe-
matical tools such as Modelica, MathModelica, Math-
ematica, and Matlab can be used to aid the process.
A comparison between a high order black-box model
and different physically parameterized models is per-
formed. One problem with the latter models is the
choice of initial values for the parameters that might
be completely unknown.
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Östring, M., S. Gunnarsson and M. Norrl¨of (2001).
Closed loop identification of the physical param-
eters of an industrial robot. In:Proceedings of the
32nd ISR(International Symposium on Robotics).
Seoul, Korea.

Tiller, Michael M. (2001).Physical Modeling with
Modelica. Kluwer Academic Publishers.

Wolfram, S. (1999).The Mathematica Book. fourth
ed.. Cambridge University Press.


