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Abstract: The ratio estimation problem of probability density function partial
derivatives under the assumption of asymptotic decay of the dependence between
observations is solved.
The convergence rate for estimators of probability density function partial deriva-
tives and its ratios in the metrics Lm, m ≥ 2, are established. The main part of
asymptotic mean square error of the piecewise smooth approximation of the ratio
substitution estimator is found. These results are applied to the ratio estimation
of derivatives of the probability density of errors in stochastic regression processes.
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1. INTRODUCTION1

An important problem in applied and theoret-
ical research is to study the properties of nonpara-
metric estimators of multivariate probability den-
sity functions (p.d.f.) and their derivatives from
dependent samples.

Usually the dependence conditions are formulat-
ing in terms of mixing conditions, which may be
combined with conditions on a deterministic p.d.f.

Note also the papers of Doukhan and Ghindes
(1983), Robinson (1986), Boldin (1982) and Vasi-
l’iev (1986), treating specific forms of dependence
in estimation problems of the p.d.f. and the distri-
bution function of the errors in an autoregression
process.

1Research supported by the Russian Foundation of Fun-
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From among recent papers on this subject one
can point out the papers of Masry (1991) and
Bosq and Cheze-Payaud (1999), where for mix-
ing processes an exact asymptotic expression for
the mean square error (MSE) of a kernel estimate
for the p.d.f. is obtained, and the papers of Tran
(1990) and Honda (1998), which show that in some
cases the dependence has no effect on the asymp-
totic variance and mean square error.

Along with estimation of the p.d.f., the estimation
of partial derivatives ratios of a multivariate p.d.f.
is of interest. These ratios are needed in many
statistical problems, for example:

— finding the extremal points and verifying
sufficient conditions for maximum and minimum
of a multimodal p.d.f.;

— estimation of the Fisher information of p.d.f.;

— optimal Bayes estimation of the parame-
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ter θ = (θ1, . . . , θs) of an exponential distribu-
tion when the prior distribution is unknown, see
(Singh, 1976) and the estimator is of the form

θ̂ =
(
∂f(x)
∂x1

/∂2f(x)
∂x2

1

, . . . ,
∂f(x)
∂xs

/∂2f(x)
∂x2

s

)
;

— optimal control of a multivariate autore-
gression process (Nemirovskii and Tsypkin, 1984)
etc.

Considered problems have a special interest for
dependent observations. For example, the knowl-
edge of logarithmic derivative of p.d.f. is neces-
sary for the construction of optimal algorithms of
nonlinear filtration (Dobrovidov, 1984) and adap-
tive control (Nemirovskii and Tsypkin, 1984) of
stochastic processes. Another applications of sim-
ilar type nonparametric estimators were consid-
ered by Boldin (1994, 1996).

A more detailed bibliography can be found in Kosh-
kin and Vasil’iev (1997, 1998), Vasil’iev (1997),
Vasil’iev and Koshkin (1998).

For the ratio estimation of p.d.f. partial deriva-
tives are often used the substitution estimators.
The difficulty relates to possible unboundedness of
the ratio estimators at some points, see (Cramer,
1946) for details.

In this paper the ratio estimation problem of p.d.f.
partial derivatives under the assumption of asymp-
totic decay of the dependence between observa-
tions is considered. Similar to Koshkin (1999), a
piecewise smooth approximation of the substitu-
tion estimators is used.

The main part of the MSE of ratios with improved
rate of convergence is found. The rate of conver-
gence of p.d.f. partial derivatives and its ratios in
the metrics Lm, m ≥ 2, are established.

2. PROBLEM SETTING

Let {Fn, n ≥ 0} be a filtration in a probability
space (Ω,F , P ), and let a sequence ε = {εn, n ≥
1} of independent identically distributed random
vectors (r.v.’s) εn = (εn1, . . . , εns)′ with p.d.f. f(t),
t ∈ Rs, adapted to {Fn} be given (a prime denotes
the transposition).

Denote for a vector a with integer components a =
(α1, . . . , αs), such that α1 +α2 + · · ·+αs = α, the
partial derivative f (α)

a (t) by the formula

f (α)
a (t) =

∂αf(t)
∂tα1

1 . . . ∂tαs
s
, f (0)

0 (t) = f(t).

Consider for the fixed vectors a and b the estima-
tion problem of the ratio

T (t) =
f

(α)
a (t)

f
(β)
b (t)

(1)

of partial derivatives of p.d.f. f(t) from observa-
tions of the process z = {zn, n ≥ 1},

zn = εn + gλ,n−1, n ≥ 1. (2)

Here gλ = {gλ,n, n ≥ 0} is a sequence of unob-
servable, adapted to {Fn} and possibly mutually
dependent s-dimensional r.v.’s; λ ∈ A is an un-
known nuisance vector parameter, with A being
the set of its possible values.

As an estimate for the ratio of the partial deriva-
tives f̂ (α)

a (x) and f̂
(β)
b (x) from the observations

zn = εn + gλ,n, n ≥ 1, the ratio of a statistics of
the form

f̂ (α)
a (t) =

1
Nhs+αN

N∑
n=1

K(α)
a

(
t− zn
hN

)
(3)

will be used. Here K(z) : Rs → R1 is a kernel,
which needs not possess the properties of a p.d.f.;
h = {hN , N ≥ 1} is a sequence of positive num-
bers.

The estimators of the type (3) for the p.d.f. f(t)
from the observations (2) have been considered in
the papers of Koshkin and Vasil’iev (1998), Vasil’i-
ev and Koshkin (1998). According to these results
the substitution estimators

TN (t) =
f̂

(α)
a (t)

f̂
(β)
b (t)

(4)

have the properties of asymptotic normality and
almost sure convergency. But the investigation of
the MSE for TN (t) has some difficulties through
the possible smallness of the denominator f̂ (β)

b (t).
Therefore, similar to Koshkin (1999), the estima-
tor

T̃N (t) =
TN (t)

(1 + δN |TN (t)|q)ρ
(5)

will be used. Here δ = {δN}N≥1 is a sequence of
positive integers; and for the constants ρ and q the
inequalities

ρq ≥ 1, ρ > 0, q > 0

are fulfilled.

Let ν be a quantity related to the maximal order
of differentiability of f(x).

In this paper the exact asymptotic expression for
the MSE of estimators (3) and (5) with improved



rate of convergence for ν > 2 is obtained.

Thus for a sufficiently smooth distribution (ν >>
1) the rate of convergence of nonparametric esti-
mators (3) and (5) approachs to the rate N−1/2

of parametric estimates for independent observa-
tions.

Similar results are also obtained for the ratios es-
timators of the p.d.f. partial derivatives of the
noises in multivariate deterministic and stochastic
regression processes, including the autoregression
processes.

3. PROPERTIES OF f̂
(α)
a (t)

In this section the basic asymptotic properties of
the estimators (3) are given.

Denote byH1(α) the set of monotonically decreas-
ing sequences h = {hN , N ≥ 1} of real numbers
hN > 0 satisfying the condition

lim
N→∞

(
hN + (Nhs+2α

N )−1
)

= 0.

Let

H2(α) = H1(α) ∩
{
h :
∑
N≥1

(Nhs+2α
N )−2 <∞

}
,

H3(α) = H1(α) ∩
{
h : lim

N→∞
Nh

s+2(α+ν)
N = 0

}
where ν ≥ 2 is an integer.

Further, omitting the subscript b = (β1, . . . , βs)′

of partial derivatives f (k)
b (x) and f (k)

n,b(x) will mean
that the set of indices β1, . . . , βs is not specified.

Definition 1.
(i) The p.d.f. f(t) is said to belong to the set
N1(n) if the function f(t) is continuous and α+ν
times differentiable on Rs, ν ≥ 2, and all the par-
tial derivatives of order α + ν satisfy the Lips-
chitz condition of degree 0 < γ ≤ 1 with constant
L > 0, i.e., for all y ∈ Rs

|ρ(t,y)| ≤ L‖t− y‖γ

where

ρ(t,y) = f (n+ν)(t)− f (n+ν)(y), ‖z‖2 =
s∑
j=1

z2
j ;

(ii) the p.d.f. f(t) is said to belong to the set
N2(n) if f(t) ∈ N1(n) and sup

t
f(t) ≤ C.

Definition 2. A finitely supported function K(u)
belongs to the class B(α) if it is continuously dif-
ferentiable up to the order α (inclusive); K(u) ∈

B+(α) if K(u) ∈ B(α) and
∫
Rs
K(u) du = 1.

Definition 3. For an even ν ≥ 2 we say that
K(u) ∈ σν(α) if K(u) ∈ B+(α), K(u) = K(−u),∫
‖ u ‖ν | K(u) | du < ∞,

∫
ujiK(u)du = 0,∫

uνiK(u)du 6= 0, i = 1, s, j = 1, ν − 1.

Definition 4. The family g(A) is said to belong
to G(m1,m2, α) if as N →∞

sup
A

< Mλ ‖ gλ,N−1 ‖2m1>= o(1/(Nhs+2α
N )m1)

and

sup
A

< Mλ ‖ gλ,N−1 ‖2m1m2>= o(1/(Nhs+2α
N )m1).

Here < vN >=
1
N

N∑
n=1

vn.

Put

Sαa,b(f̂) = Mλ(f̂ (α)
a − f (α)

a )(f̂ (α)
b − f (α)

b ),

u2m(f̂ (α)
a ) = Mλ(f̂ (α)

a − f (α)
a )2m,

ωαa,b(t) = ωαa (t)ωαb(t),

ωαa (t) =
1
ν!

s∑
i=1

f
(α+ν)
a+bi(ν)(t)

∫
uνiK(u)du,

bi(ν) = ν(δi1, . . . , δis)′

with δij denoting the Kronecker delta,

Lαa,b =
∫
K(α)

a (u)K(α)
b (u)du,

v2
N (α) = h2ν

N + (Nhs+2α
N )−1, N ≥ 1.

Theorem 1. The estimators (3) of the function
f (α)(t) have the following asymptotic properties:

(i) if f(t) ∈ N1(α), K(u) ∈ σν(α), h ∈ H1(α),
g(A) ∈ G(1, να, α), να = max(ν + 1, (α + ν +
1)/2), ν ≥ 2, then as N →∞

sup
A
| Sαa,b(f̂)−

Lαa,bf(t)

Nhs+2α
N

−ωαa,b(t)h2ν
N |= o(v2

N (α));

for the bias bN of the estimator f̂ (α)
a (t) by g(A) ∈

G(1, ν + 1, α) as N →∞ we have

sup
A
| bN − ωαa (t)hνN |= o(vN (α));

(ii) if f(t) ∈ N2(α), K(u) ∈ σν(α), g(A) ∈
G(m, ν + 1, α), m ≥ 1, h ∈ H1(α), then

sup
A
u2m(f̂ (α)

a ) = O(v2m
N (α)), N →∞.



4. ESTIMATION OF T (t)

It is well known that the substitution estimators
of the type TN (t) are unstable, and theorems for
MSE using the majorizing sequences can not be
apply, see (Koshkin, 1999; Dobrovidov and Kosh-
kin, 1997). The problem can be resolved by using
a piecewise smooth approximation of the form (5).

Put
H(φ) : Rp → R1, p ≥ 1;

φ̂ = {φN}N≥1 is the sequence of estimators of the
argument φ;

Q(m) = {(q, k) : q ≥ q(m) = 2k/(m− k − 1) > 0,

m ≥ m0 = [3, k = 1; 2k, k ≥ 2]},

k,m are some positive integers;

H̃(φN ) = H(φN )/(1 + δN |H(φN )|q)ρ

where q > 0, ρ > 0, ρq ≥ 1, δN > 0.

Let us formulate the theorem for the estimator
H̃(φN ) (see Corollary 4 in Koshkin (1999)).

Theorem 2. Assume that

(i) for some m ≥ 3

M‖φN − φ‖m = O(d−m/2N ), dN ↑ ∞;

(ii) functionH(z) ∈Wp(φ), i.e., there is an neigh-
bourhood in which the function H(z) and all its
partial derivatives up to the second order are con-
tinuous and bounded in some neighbour of the
point φ;

(iii) δN = Cd−1
N , 0 < C <∞;

(iv) H(φ) 6= 0 or q is natural even.

Then for any (q, k) ∈ Q(m)

|M [H̃(φN )−H(φ)]k −M [∇H(φ)(φN − φ)]k| =

= O

(
d
− k+1

2
N

)
where

∇H(φ) =
(
∂H

∂φ1
, . . . ,

∂H

∂φp

)
.

Put

χ(x ≤ a) = (1, x ≤ a; 0, x > a),

L̃α,βa,b = f(t)(f (β)
b (t))−2[Lαa,aχ(α ≥ β)−

−2T (t)Lαa,bχ(α = β) + T 2(t)Lβb,bχ(α ≤ β)],

ω̃α,βa,b =

=
(
f

(β)
b (t)

)−2

[ωαaχ(α ≥ β)− T (t)ωβbχ(α ≤ β)]2,

$ = max(α, β).

The next result follows from Theorems 1,2 for the
estimators of T (t).

Theorem 3. Assume that f(t) ∈ N2($), ν ≥ 2,
for some m ≥ 3 g(A) ∈ G(m, ν$, $), h ∈ H1($).
Then for the estimators T̃N , defined by (7), for
any (q, k) ∈ Q(m), δN = O(v2

N ($)) as N → ∞
the next equation

sup
A
Mλ|T̃N (t)− T (t)|k = O(vkN ($))

holds; the main part of the MSE of the estimator
T̃N has the form

sup
A
|Mλ[T̃N (t)− T (t)]2 −

f(t)L̃α,βa,b

Nhs+2$
N

− ω̃α,βa,bh
2ν
N | =

= o(v2
N ($)).

Note that the convergence rate of the MSE for the
estimator T̃N (t) coincides with the convergence
rate of MSE for estimators of greatest derivative
of the p.d.f. f(t) in the ratio T (t).

5. DERIVATIVES ESTIMATION OF THE
P.D.F. OF THE NOISE IN

AUTOREGRESSION

Consider the scalar random process (xn)n>−p de-
scribed by the system of equations

xn = λ1xn−1+. . .+λpxn−p+εn, n = 1, 2, . . . (6)

Here λ = (λ1, . . . , λp)′ ∈ A is the vector of un-
known parameters with A being the set of all vec-
tors λ, for which the process (6) is stable, i.e. all
roots of the polynomial

P(z) = zp − λ1z
p−1 − . . .− λp

lay inside the unit circle. Note that A is a boun-
ded set in Rp. Assume that (εn,Fn)n≥1 is a se-
quence of independent identically distributed val-
ues with p.d.f. f(t).

The problem is to construct estimators for partial
derivatives f (α)

a (t) of p.d.f. f(t) and its ratios with
improved rate of convergence. Since εn cannot
be observed directly, we will use the observable
variables

zn = xn − λ′(n− 1)x(n− 1) =



= εn + (λ− λ(n− 1))′x(n− 1), n ≥ 1, (7)

λ(n) = (λ1(n), . . . , λp(n))′,

x(n) = (xn, . . . , xn−p+1)′

for the estimation of f (α)
a (t), as it was done in

Koshkin and Vasil’iev (1997, 1998), Vasil’iev (1986,
1997), Vasil’iev and Koshkin (1998). The obser-
vations (7) have the form (2) if put

gλ,n = ∆′(n)x(n), ∆(n) = λ− λ(n). (8)

Here λ(n) are some Fn-measurable estimators for
the vector parameter λ.

Note that the variables yn = λ′(n)x(n) may be
considered as the predictions of xn, and zn =
xn − yn are the errors of these predictions.

The estimators λ(n) will be constructed on the
basis of the least square estimators λk, which are
calculated at some unbounded increasing sequence
(rk)k≥0 of natural numbers rk, r0 > 0 :

for k ≥ 0

λk = F−1(rk)B(rk), λ0 = 0, (9)

(F(n))ij = S|i−j|(n), i, j = 1, p, Sl(n) = 〈xnxn−l〉,

B(n) = (S1(n), . . . , Sp(n))′ with (F)ij denoting
the ij-th element of matrix F.

Denote by λ̃k = (λ̃k1, . . . , λ̃kp)′ the regularized es-
timators

λ̃ki = λki(1 + r−1
k |λki|

τ )−ρ, (10)

τ > 0, ρ > 0, ρτ ≥ 1.

Let S(A) be a closed ball in Rp with the radius
cp containing the set A. Put for all k ≥ 1 and
rk−1 ≤ n < rk

λ(n) = projS(A)λ
∗(k − 1) =

= [1 + (cp/||λ̃k|| − 1)χ(||λ̃k|| > cp)]λ̃k. (11)

The following Lemma contains the properties of
estimators λ̃k and predictions yn.

Lemma. Assume that the sequences (λ(n)) and
gλ, λ ∈ A, are defined in (6)–(11), and for some
m ≥ 1 the moments E||x(0)||4m <∞ and Eε4m

1 <
∞ exist. Then

i) for all (τ, i) ∈ Q(m) as k →∞ the estimators
(10) have the property

sup
A
Mλ‖λ̃k − λ‖i = O(r−i/2k );

ii) as N →∞

sup
A

N∑
n=1

Mλ‖gλ,n−1‖m =
{
O(lnN), m = 2,
O(1), m > 2.

The assertions of Theorems 1,3 for the observa-
tion model (7) will be true if the assemblage g(A)
of sequences gλ defined by (8) satisfies the condi-
tions G.

The next Proposition follows from the assertion 2
of the Lemma.

Proposition. Let the autoregressive process (6)
be stable and for some integer numbers m1 ≥ 1,
m2 ≥ 1 the moments E||x(0)||8m1m2 and Eε8m1m2

1

exist. Then the family g(A) of functions (gλ,n)
defined by (8) has the property

g(A) ∈ G(m1,m2, α)

if rk = kρ, ρ > 4/3 and h ∈ H1(α).

Remark 1. Theorem 2 is used both for the pa-
rameters estimation of autoregressive process and
for the ratio estimation of the p.d.f. derivatives
of autoregressive noise. The results of Section 4
may be also applied for some multidimensional
linear stochastic regression models considered by
Koshkin and Vasil’iev (1998), Vasil’iev and Kosh-
kin (1998). Note that for these models the using of
sequential estimators of dynamic system parame-
ters proposed by Borisov and Konev (1977) and
Vorobeichikov and Konev (1980) is preferable.

Remark 2. Similar to Vasil’iev (1997) it can be
shown that the second assertion of Lemma and
Proposition hold under somewhat weaker assump-
tions on the moments of x(0) and ε1.

6. CONCLUSION

The kernel estimators (3) and (5) for the deriva-
tives of multivariate p.d.f. f(t) and its ratio T (t)
by dependent observations have the improved rate
of convergence Nν/(s+2(α+ν)) and Nν/(s+2(ω+ν))

correspondingly.

This improvement of the convergence rate is pro-
vided by the requirements σν with ν > 2 on the
kernel K(·), see (Müller and Gasser, 1979; Kosh-
kin, 1990).

The results are applied to the dynamic systems, in
particular, for the estimation of p.d.f. derivatives
of the noises of stochastic regression and autore-
gression processes with unknown parameters. The
proposed method may be applied to the more gen-
eral models, for example, to the nonlinear ARCH



time series considered by Neumann and Kreiss
(1998), Masry and Tjøstheim (1995) or for the
control systems (Konev and Vasil’iev, 1997).

Theorems 1,2 give the possibilities to estimate more
general functions H(·) ∈ Wp(φ) of p.d.f. deriva-
tives in the metrics Lm, m ≥ 2, in comparison
with the ratio-function considered in this paper.
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