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1. INTRODUCTION

Problems of reconstruction of input disturbances,
determining the motion of a dynamical system,
through measurements of a part of phase coordinates
are embedded in the theory of inverse problems of
dynamics of control systems. This theory is under
intensive development at the present time. Inputs, as
a rule, are the factors which uniquely determine the
motion of a system. Any available information on
the process may be considered as an output. Usually,
such information is given by a signal on a part of
current system’s state. One of approaches to solving
similar problems based on the methods of the theory
of positional control (Krasovskii and Subbotin, 1988)
was suggested in (Kryazhimskii and Osipov, 1983)
and then developed in (Osipov and Kryazhimskii,
1985, 1995; Maksimov, 1995, 1999, 2000). In the
present paper, following researches in this field, for
systems described by ordinary differential equations
or differential-functional equations, a number of
algorithms of dynamical reconstruction of inputs
is suggested. These algorithms are dynamical and
operate in “real time” mode. They are stable with
respect to informational noises and computational
errors.
Briefly, the essence of the problems under
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consideration may be formulated in the following
way. There is a dynamical systemΣ functioning on a
time intervalT = [0;ϑ ]. Its trajectory

x(t) = x(t;x0;ur(�)) 2 IRq
; t 2 T;

depends on an unknown time-varying inputur(�) 2

P(�). Here P(�) � L2(T; IRN
) is a set of admissible

controls. On the intervalT, a uniform net∆ = fτ kg
n
k=0

with a stepδ is taken,τ0 = 0, τk+1 = τk +δ, τn = ϑ .
An output

y(t) =Cx(t)

is measured at the momentsτk (C is an r � q-
dimensionalß matrix). Sometimes it is assumed (for
the sake of simplicity) that the outputy(t) is measured
at all time momentst 2 T. Results of inaccurate
measurements are vectorsξk 2 IRr satisfying the
inequalities

kξk�y(τk)k � h; k2 [0 : n�1];

whereh is the value of the level of informational noise,
symbolkxk denotes the Euclidean norm of vectorx.
It is required to indicate an algorithm that allows to
reconstruct an inputuh

�(�) being an approximation to
some inputu�(�) generating the outputy(�).
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2. SOLUTION SCHEME

The approach developed in (Kryazhimskii and
Osipov, 1983; Osipov and Kryazhimskii, 1985, 1995;
Maksimov, 1995, 1999, 2000) is applied in the
present paper. Following this approach, the problem of
approximate calculation of controlu�(�) is substituted
by the problem of control of an auxiliary systemM
(a model), which is formed according to the feedback
principle. The phase trajectory of the model is denoted
by yh

(�) and the control action is denoted byuh
(�).

The process of control of the model is organized
in conformity to the rule identified with some map
uh
(�) = uh

(�;ξ (�);yh
(�)). The process is realized so

that under appropriate conditions of concordance of
some parameters the controluh

(�) is “close" to the
controlu�(�).

Let us describe the scheme of the work of the
algorithm in details. An auxiliary dynamical systemM
(a model) is introduced. This model functioning on the
time intervalT has unknown input (control)uh

(t) and
output yh

(t). The process of synchronous feedback
control of the systemsΣ andM is organized on the
interval T. This process is decomposed into(n� 1)
identical steps. At thek-th step carried out during
time intervalδk = [τk;τk+1) the following actions are
fulfilled. First, at the time momentτ i the control

uh
(t) = uh

(τk;ξk;y
h
(τk)); t 2 [τk;τk+1)

is calculated according to the chosen ruleuh. Then
(till the momentτk+1) the controluh

= uh
(t), τk �

t < τk+1, is fed onto the input of the systemM.
The valueyh

(τk+1) is the result of the work of the
algorithm at thek-th step. Thus, all complexity of
solving the problem under consideration is reduced to
the appropriate choice of the modelM and the function
uh.

The procedure for solving the problem of
reconstruction is, in essence, equivalent to the
procedure for solving the following two problems:

a) the problem of choice of the modelM and

b) the problem of choice of the ruleuh for forming a
control in the model.

Note that the next two aspects play an important role
in the process of solving problems a) and b). The
first one is a priori information on the structure of the
systemΣ (the form of equation, the properties of its
solution and so on), and the second one is the structure
of the set of admissible controlsP(�).

The solution flowchart for the problem of
reconstruction is shown below.

Σ

uh M-uh
(t) -yh

(t)

6

� ur(t)ξ (t)

-

Here symbolur stands for the real control acting upon
the systemΣ.

3. ORDINARY DIFFERENTIAL EQUATIONS

Consider the following systemΣ of equations(
ẋ1(t) = A1x1t +C1x2(t); t 2 T;

ẋ2(t) = A2x2t +E(x1(t))+B(x1(t))u(t)
(1)

with the initial state

x1(0) = x10; x2(0) = x20:

Herex1(t)2 IRN; x2(t)2 IRq; u(t)2 IRm; A1;A2;C1 are
constant matrices of dimensionsN�N, q�q andN�
q respectively;E(�) : IRN

! IRq andB(�) : IRm
! IRq

are matrix functions satisfying the global Lipschitz
conditions, i. e.

kE(x)�E(y)k � LEkx�yk; x;y2 IRN
;

kB(x)�B(y)k� LBkx�yk; x;y2 IRm
:

Let P� IRm be a convex, closed and bounded set. Fix
time momentsτ n

k = kϑ =n, 1� k� n�1.

Let the first component of the statex1(τ
n
k ) be observed

at every time momentτ n
k . The observation results are

represented by vectorsξk 2 IRN such that

kx1(τ
n
k )� ξkk � hn;

i. e. in this casey= x1 and matrixC has the form

C =

�
I
0

�
:

Our goal is to reconstruct the real control (input)
ur(�) = ur(�;x1(�)) compatible with the outputx1(�).

In this case, the modelM is described by the system

8<
:

ẏhn
1 (t) = A1yhn

1t +C1u1;hn(t); t 2 [τ n
k ;τ

n
k+1)

ẏhn
2 (t) = A2yhn

2t +E(ξk)+B(ξk)u
hn(t)

yhn
1 (0) = x10; yhn

2 (0) = x20; k= 0;1; : : : ;n�1

with controlsfu1;hn(t);uhn(t)g 2 IRq
� IRm.

Let the control in the model be defined by the rule



u1;hn(t) = argminfL1(αn;v;s
0
k) : v2 S(d1)g (2)

uhn(t) = argminfL2(βn;v;sk) : v2 Pg:

Heret 2 [τ n
k ;τ

n
k+1).

L1(α ;v;s
0
k) = αnkvk2

+2(s0
k;C1v);

L2(β ;v;s
�

k) = βnkvk2
+2(s�k;B(ξk)v);

s0
k = (yhn

1 (τ n
k )� ξk)exp(�2ω1τ n

k+1);

sk = (yhn
2 (τ n

k )�v1;hn(τ n
k ))exp(�2ω2τ n

k+1);

d1 = supfkx2(t;x0;u(�))k : u(�) 2 P(�); t 2 Tg;

S(d1) = fv2 IRq : kvk � d1g; x0 = fx10;x20g;

ωj = 1=2+ jAjj; j = 1;2;

fαng
∞
n=1 and fβng

∞
n=1 are sequences of positive

numbers, symbol(x;y) denotes the scalar product of
vectors x;y and symboljAj denotes the Euclidean
norm of matrixA.

It is assumed that the following relationships between
the parameters are valid:

αn ! 0; βn ! 0; f(hn+n�1=2
+αn)

1=2

+(hn+n�1=2
)α�1

n gβ�1
n ! 0 as n! ∞:

For example, one can sethn = n�1=2
; αn =

h1=2
n ; βn = hµ

n ; µ = const2 (0;1=4). Let sj(�) be a
unique solution onT of the matrix equation

dsj(t)

dt
= Ajsj(t) for a. a.t 2 T

with the initial statesj(t) = I , t � 0, i. e.sj (t) is the
fundamental matrix of the system ˙x = A jx; symbol
V(T; IRq

) denotes the space of all functionst ! x(t) 2
IRq with the bounded variation.

Theorem 1.Let a controlvhn(�) be determined by (2).
Let q� N and the following conditions be fulfilled:

(1) there exist a numberd2 > 0 and aq-th order
minor of matrixs1(t)C1, such thatq�q-matrixs1(t)C1
corresponding to this minor satisfies the inequality

inf
t2T

ks1(t)C1vk � d2kvk 8v2 IRq
;

(2) for any solutionx2(�) of system (1) the inclusion
fs1(ϑ � t)C1g

�1x2(t) 2V(T; IRq
) is true.

Then the convergenceuhn(�) ! ur(�;x1(�))) in
L2(T; IRm

) takes place.

Let the following conditions be also fulfilled:

(3) there exist a numberd3 > 0 and anm-th order
minor of matrix s2(ϑ � t)B(x(t)), such thatm�m-

matrixfs2(ϑ � t)B(x(t))g corresponding to this minor
satisfies the inequality

inf
t2T

jfs2(ϑ � t)B(x(t))gj � d3kvk 8v2 IRm
:

If fs2(ϑ � t)Bx1(t)g
�1ur(t;x1(�)) 2 V(T;R) then the

following estimate of convergence rate of the
algorithm takes place

juhn(�)�ur(�;x1(�))jL2(T;IRm
)

� cfµn+µnβ�1
n g: (3)

Here

µn = (hn+n�1
+αn)

1=2
+((hn+n�1=2

)α�1
n )

1=2
:

Proof outline. In the beginning, we estimate variation
of the value

ε1(t) = exp(�2ω1t)kyhn
1 (t)�x2(t)k

2

+αn

tZ

0

fku1;hn(τ )k2
�kx2(τ )k

2
gdτ :

Taking into account (fort 2 [τ n
k ;τ

n
k+1]) the equalities

yhn
1 (t) = s1(t� τ n

k )y
hn
1 (τ n

k )

+

tZ

τ n
k

s1(t� τ )C1u1;hn(τ )dτ ;

x2(t) = s1(t� τ n
k )x2(τ

n
k )

+

tZ

τ n
k

s1(t� τ )C1x2(τ )dτ ;

one can derive the estimate

ε1(τ
n
k+1)� exp(�2ω1τ n

k )kyhn
1 (τ n

k )�x2(τ
n
k )k

2

+λk+µk+αn

τ n
k+1Z

τ n
k

fku1;hn(τ )k2
�kx2(τ )k

2
gdτ ;

wheres1(t) is the fundamental matrix of the system
ẋ= A1x,

λk = 2(s0
k;

τ n
k+1Z

τ n
k

s1(τ
n
k+1� τ )

�C1fu1;hn(τ )�x2(τ )gdτ )+k1ϑ hn=n;

µk = (ϑ =n)exp(�2ω1τ n
k )

�

τ n
k+1Z

τ n
k

kC1fu1;hn(τ )�x2(τ )gk
2dτ :



Note thatµk � k2(1=n)2. In addition, in virtue of (2)
the following inequalities

λk+αn

τ n
k+1Z

τ n
k

fku1;hn(τ )k2
�kx2(τ )k

2
gdτ

� k3(hn+1=n)=n

are true. Hence the following estimate takes place:

ε1(τ
n
k+1)� ε1(τ

n
k )+d0(hn+1=n)=n: (4)

By means of estimate (4) we obtain

kyhn(τ n
k )�x2(τ

n
k )k

2 (5)

� k4fhn+αn+1=ng;

ϑZ

0

ku1;hn(τ )k2dτ �
ϑZ

0

kx2(τ )k
2dτ (6)

+k5fhn+1=ng=αn:

From (5), using the Cauchy formula for representation
of solution of a linear differential equation, we derive

max
t2[0;ϑ ]

k

tZ

0

S(τ )C1fu1:hn(τ )�x2(τ )gdτk (7)

� k6fhn+αn+1=ng;

whereS(τ ) = s1(ϑ � τ )C1. Then, using (6) we deduce
that

ϑZ

0

ku1;hn(τ )�x2(τ )k
2dτ � 2

ϑZ

0

(S(τ )(x2(τ ) (8)

�u1;hn(τ ));S�1
(τ )x2(τ ))dτ +k7fhn+1=ng=αn:

Let us apply the following lemma.

Lemma 2.(Osipov and Kryazhimskii, 1995) Let

u(�) 2 L∞(T; IRq
), v(�) 2V(T; IRq

), k

tZ

0

u(τ )dτk � ε,

kv(t)k � K 8t 2 T. Then

k

ϑZ

0

(u(τ );v(τ ))dτk � ε(K +var(T;v(�))):

Here the symbol var(T;v(�)) denotes the full variation
of v(�) in T. From (7), (8) and this lemma we obtain

ϑZ

0

ku1;hn(τ )�x2(τ )k
2dτ � ν(n)

= d1fhn+1=n+αn)
1=2

+(hn+1=n)α�1
n g:

Now, by the standard scheme, we establish the
convergenceuhn(�) to ur(�;x1(�)). Let condition 3 be
also fulfilled. Let us estimate the variation of the value

ε2(t) = exp(�2ω2t)kuhn(t)�ur(t;x2(�))k
2

+βn

tZ

0

fkuhn(τ )k2
�kur(t;x2(�))k

2
gdτ :

Analogously to (Krasovskii and Subbotin, 1988;
Maksimov, 2000), we deduce

ε2(τ
n
k+1)� d1µ(0)

(n)β�1
n ;

where

µ(0)
(n) = hn+1=n+ν1=2

(n):

This implies (3).

4. DIFFERENTIAL EQUATIONS WITH TIME
DELAY

Let a system Σ be described by the nonlinear
differential equation with time delay

ẋ(t) = f (x(t);x(t� τ ))+Bu(t); (9)

t 2 T = [0;ϑ ]; x(s) = x0(s); s2 [�τ ;0];

where x 2 IRq, f is a nonlinear Lipschitz
transformation from IRq � IRq to IRq, u 2 IRN, B is
q�N-matrix, τ = const> 0, x0(s) 2C([�τ ;0];Rg

).
Consider the case of measurement of all coordinates,
i. e. the case when

C = I :

Denote byu�(�) a unique input fromL2(T; IRN
) of

minimal norm which produces the same evolutionx(�)
asur(�). This is the input that can be approximated. Fix
time momentsτ n

k = kϑ =n, 1� k� n�1.

Let the following condition be fulfilled.

Condition 1. P(�) = L2(T; IRN
).

In this case, the modelM is described by the linear
differential equation

ẏhn(t) = f (ξk;ξi�kτ
)+Buhn(t)+u1;hn(t); (10)

t 2 [τ n
k ;τ

n
k+1)

with the initial conditionyhn(0) = ξ0. For simplicity
assume thatkτ = τ=m. The control in the model is
defined by the rule

uhn(t) =
1
αn

B0
[ξk�yhn(τ n

n)]; t 2 [τ n
k ;τ

n
k+1); (11)



u1;hn(t) = c
ϑ
nα

B0
[ξk�yhn(τ n

k )]:

Let sequencesfhng, fαng be taken with the following
properties:

hn ! 0; αn ! 0; (hn+n�1
)α�1

n ! 0: (12)

Theorem 3.Let condition (12) be fulfilled. Then
the sequence of functionsfuhn(�)g defined by (11)
converges tou�(�) in L2(T; IRN

) asn! ∞.

Proof outline. The functional

µ(t) = kx(t)�yhn(t)k2

+α
tZ

0

[ juhn(s)j2�jur(s)j
2
]ds

is associated with the reconstruction process. The
values ofµ(t) cannot be computed since they depend
on unknown values ofur(�) andyhn. The controluh

(�)

is chosen in such a way (see (11)) thatµ(τ i) satisfies
the difference equation of the following form:

µ(τi+1)� µ(τi)+k1hn

τi+1Z

τi

�
kur(τ )kdτ (13)

+k21=n

τi+1Z

τi

kur(τ )k2dτ

+k3(h
2
n+h=n+1=n2

+α 2
nhn+α 2

n=n):

Namely,u(1)h
(�) is chosen so that

uh
j
[τi ;τi+1)

(�)

= argminf

τi+1Z

τi

f2(yhn(τi)� ξk;Bv(1)(s))

+α jv(1)(s)j2gds: v(1)(�) 2 L2([τi ;τi+1]; IR
n
)g:

Further arguments also follow the standard scheme.

From the results of (Osipov and Kryazhimskii, 1995;
Maksimov, 2000), it follows

Theorem 4.Let the functionur(�) = ur(�;x(�)) be a
function of bounded variation. Then the following
estimate of the rate of algorithm convergence holds:

kuh
(�)�ur(�)k

2
L2(0;T)

� c1α�1
n (hn+1=n)+c2(αn+1=n+hn)

1=2
:

Here c1 and c2 are some constants, which may be
written in an explicit form.

5. EXAMPLE

In this section we present few numerical simulations.
We are not going to present a numerical discussion of
the method. Our goal is to illustrate the dependence
of algorithm’s output on the valueh. The following
system of the second order (x1;x2 2 IR) was
considered:

(
ẋ1(t) = x1(t)+asin(x2(t� τ ))+u1(t)

ẋ2(t) = bcos(x1(t� τ ))+x2(t)+u2(t)

on time interval T = [0;2]. It was assumed that
the initial state had the formx1(t) = 1+ t, x2(t) =
�2cos(t), for t 2 [�τ ;0]. The input was computed
by the following formulas u1(t) = t2, u2(t) =

5sin(2t). In the numerical experiment, we assume
for definiteness thatξ i1 = x1(τi) + h sin(Mτi), ξi2 =

x2(τi)+h cos(M1τi). The following system was taken
as the model:

8<
:

ẏh
1(t) = ξi1+asin(ξ i� j2)+v11

(τi)+v21
(τi)

ẏ2(t) = bcos(ξ i� j1)+ ξi2+v12
(τi)+v22

(τi);

t 2 δi = [τi ;τi+1)

with initial statew1(0) = 1+h, w2(0) =�2�h. Here
j = [τ=δ] denotes the integral part of the number
[τ=δ]. Controlsvh at momentsτ i were calculated as
follows (see (11))

v11
(τi) = �(yh

1(τi)� ξi1)=α ;

v12
(τi) = �(yh

2(τi)� ξi2)=α ;

v21
(τi) = Cδ(yh

1(τi)� ξi1)=α ;

v22
(τi) = Cδ(yh

2(τi)� ξi2)=α :

In figures 1–3, the results of calculations are presented
for the case whena = 5, b = 3, τ = 1, α = 0:01,
C = 1, M = 10, M1 = 50. Fig. 1 corresponds to the
case whenh= 0:001,δ = 0:001, Fig. 2—h= 0:001,
δ = 0:005, Fig. 3—h = 0:1, δ = 0:005. In figures
1–3, solid (dash) lines represent controlu(t) (model
controlsvh

(t)). As it is seen from figures, the larger
is the value of system’s phase trajectory measurement
errorh, the “worse” is algorithm’s output.



Fig. 1.h= 0:001,δ = 0:001.

Fig. 3.h= 0:001,δ = 0:005.

Fig. 5.h= 0:1, δ = 0:005.
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