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Abstract: A problem of dynamical estimation of inputs in nonlinear differential systems is
considered. Solution dynamical algorithms based on the methods of the theory of positional
control are suggested. The algorithms operate in “real time” mode. They are stable with
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1. INTRODUCTION consideration may be formulated in the following
way. There is a dynamical systemfunctioning on a

Problems of reconstruction of input disturbances, time intervalT = [0,3]. Its trajectory
determining the motion of a dynamical system,
through measur_ements of a part _of phase coordinates X(t) = X(t; X, Ur (1)) €RY, teT,
are embedded in the theory of inverse problems of
dynamics of control systems. This theory is under
intensive development at the present time. Inputs, asdepends on an unknown time-varying inpuyt(-) €
a rule, are the factors which uniquely determine the P(.). Here P(-) C L,(T;RV) is a set of admissible
motion of a system. Any available information on controls. On the interval, a uniform neA = {1, }7_,
the process may be considered as an output. Usuallywith a stepd is taken,r, = 0, T =T +0, Tn=17.
such information is given by a signal on a part of An output
current system’s state. One of approaches to solving
similar problems based on the methods of the theory y(t) = Cx(t)
of positional control (Krasovskii and Subbotin, 1988)
was suggested in (Kryazhimskii and Osipov, 1983)
and then developed in (Osipov and Kryazhimskii, is measured at the momentg (C is anr x -
1985, 1995; Maksimov, 1995, 1999, 2000). In the dimensional matrix). Sometimes it is assumed (for
present paper, following researches in this field, for the sake of simplicity) that the outputt) is measured
systems described by ordinary differential equations at all time moments € T. Results of inaccurate
or differential-functional equations, a number of measurements are vectofg € R" satisfying the
algorithms of dynamical reconstruction of inputs inequalities
is suggested. These algorithms are dynamical and
operate in “real time” mode. They are stable with 1& —y(t)ll <h ke[0:n-1],
respect to informational noises and computational
errors.
Briefly, the essence of the problems under wherehis the value of the level of informational noise,
symbol||x|| denotes the Euclidean norm of vector
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(Project 00-15-96086). some inpuu,(-) generating the outpw-).




2. SOLUTION SCHEME

The approach developed in (Kryazhimskii and
Osipov, 1983; Osipov and Kryazhimskii, 1985, 1995;
Maksimov, 1995, 1999, 2000) is applied in the

present paper. Following this approach, the problem of

approximate calculation of contral(-) is substituted
by the problem of control of an auxiliary systelh

(a model), which is formed according to the feedback
principle. The phase trajectory of the model is denoted

by y"(-) and the control action is denoted bf(-).

The process of control of the model is organized
in conformity to the rule identified with some map
un(-) = u(-;&(),y"(-)). The process is realized so

that under appropriate conditions of concordance of

some parameters the contnal(-) is “close" to the
controlu,(-).

Let us describe the scheme of the work of the
algorithm in details. An auxiliary dynamical systdvh
(amodel) is introduced. This model functioning on the
time intervalT has unknown input (contro)"(t) and
outputy"(t). The process of synchronous feedback
control of the system& andM is organized on the
interval T. This process is decomposed ir(to— 1)
identical steps. At the&k-th step carried out during
time intervald, = [1,, T, ;) the following actions are
fulfilled. First, at the time momen; the control

u"(t) = Uh(Tkafk,yh(Tk))a t € [T, Teyq)

is calculated according to the chosen rufé Then
(till the momentr, ;) the controlu® = u"(t), 7, <
t <714 is fed onto the input of the system.
The valueyh(rk+1) is the result of the work of the
algorithm at thek-th step. Thus, all complexity of

solving the problem under consideration is reduced to

the appropriate choice of the modéland the function
h
u".

The procedure for solving the problem of

reconstruction is, in essence, equivalent to the

procedure for solving the following two problems:
a) the problem of choice of the moddl and

b) the problem of choice of the rulg" for forming a
control in the model.

Note that the next two aspects play an important role

in the process of solving problems a) and b). The
first one is a priori information on the structure of the
systemZ (the form of equation, the properties of its

solution and so on), and the second one is the structure y’In (0) = Xy, ygn(O) =Xy k=0,1,.

of the set of admissible controfX-).

The solution flowchart for
reconstruction is shown below.

the problem of

0 u'(t) ™ ] ‘Yh(t)
() = ur (t)

Here symbol, stands for the real control acting upon
the systenk.

3. ORDINARY DIFFERENTIAL EQUATIONS

Consider the following systein of equations

{

with the initial state

X (t) = Axy +C (1), teT, W
1
X5 (t) = AXy +E (X (1)) + B(x(t))u(t)

X1(0) =X10,  %5(0) = Xyq.

Herex, (t) € RN; x,(t) € R%; u(t) e R™ A, A,,C, are
constant matrices of dimensioNsx N, g x gandN x

q respectivelyE(-) : RN — R% andB(:) : R™ — RY
are matrix functions satisfying the global Lipschitz
conditions, i. e.

IEC) —EMIl < Lelx=yll, xyeR"Y,

IBO) —BY)Il <Lglx—yll, xyeR™

Let P c R™ be a convex, closed and bounded set. Fix
time momentgy' =kd /n, 1<k<n-1.

Let the first component of the statg(1y) be observed
at every time momenty. The observation results are
represented by vectoég € RN such that

1% (7¢) = &l < i,
i. €. in this caseg/ = x; and matrixC has the form
Cc= {'

Our goal is to reconstruct the real control (input)
Ur(-) = ur(-;%,(-)) compatible with the outpu, (-).

In this case, the mod® is described by the system

|

yin(t) = Ay +Crub(t), te [t 1, y)
Yn(t) = Ay + E(&,) +B(&)u™ (1)

n-1

..y

with controls{u™M™(t),u(t)} € RY x R™.

Let the control in the model be defined by the rule



utM(t) = argmin{L, (an, v ) :vESd)}  (2)
u™(t) = argmin{L,(Bn,V,S,) : V € P}.
Heret € [1, 15, ).
Ly(a,%5) = an|[V]|+2(,Cyv),
Lo(B, %) = BallVII* +2(s6, B(§)V),
se = (YIn(T) — &) exp(—20; Ty 1),
S = O3 (T8) = VE(1R)) exp(— 26, T, ),

dy = supf||x,(t; o, u(-))[| u(-) € P(-), teT},
S(dy) ={ve RI: V[ <di}, %= {Xy0: %0}
w =1/2+ A, =12

{an}r_; and {Bn}>_, are sequences of positive
numbers, symbo(x,y) denotes the scalar product of
vectorsx,y and symbol|A| denotes the Euclidean

norm of matrixA.

It is assumed that the following relationships between

the parameters are valid:
on—0, Br—0, {(ha+nY?+a,)?
+(hh+nYa, 1Bt -0 as n— w.

For example, one can sef, = nY2, qa, =

ht/2, Ba=hi, u=conste (0,1/4). Lets;(-) bea
unique solution ol of the matrix equation

ds; (t)
dt

=Ajsit)fora.ateT

with the initial states;(t) =1,t <0, i. e.s;(t) is the
fundamental matrix of the system= A.x; symbol
V(T; RY) denotes the space of all functians> x(t) €
R% with the bounded variation.

Theorem 1.Let a controlv™(-) be determined by (2).
Letq < N and the following conditions be fulfilled:

(1) there exist a numbed, > 0 and ag-th order
minor of matrixs, (t)C,, such that) x g-matrixs, (t)C,
corresponding to this minor satisfies the inequality

inf [ OC VI > dylv| Ve RS,

(2) for any solutiorx,(-) of system (1) the inclusion
{518 —t)C } 7%, (t) € V(T; RY) is true.

Then the convergencai™(-) — ur(5%(-))) in
L,(T;R™) takes place.

Let the following conditions be also fulfilled:

(3) there exist a numbeit; > 0 and anm-th order
minor of matrixs,(3 — t)B(x(t)), such thatm x m-

matrix{s,(d —t)B(x(t))} corresponding to this minor
satisfies the inequality

inf [{5,(9 —DBXO)} > dgllvil WveR™

If {s,(8 —1)Bx,(t)} ur(t,x,(+)) € V(T;R) then the
following estimate of convergence rate of the
algorithm takes place

|uhn(.) — ur(-;Xl('))h_z(T;Rm)

< c{pn+ By 1} 3)

Here

tn = (hh+n"1+ an)¥Y?+ (hy+n Y2 a, Y2

Proof outline. In the beginning, we estimate variation
of the value

& (t) = exp(—2w) [y (1) — %)

t
+ an/{llul’h”(f)llz = [Ixo(T)I[?}dr.
0

Taking into account (for € [, 7, ,]) the equalities
yr(t) = Sl(tt_ TV (T8)
+/sl(t— T)C,utM(1)dr,
TI’]

k

o) = st =0t

+ /sl(t —T)Cy%,(1)dr,
T
one can derive the estimate
£1(TRy1) < exp(—2a, ) YN (T) — Xo(T) 12
Tt

At et an [ ) = ()|} dr,
n

k

wheres, (t) is the fundamental matrix of the system
X=AX,

n
Tk+1

M= 2, / STy — 1)
x C{ut™(T) — x,(1)} dT) + k9 hn /1,
Hy = (9 /n) exp(—2w, 1)

n
Tk+1

% [ Iy ut™(n) (1)} Pdr.



Note thaty, < k,(1/n)2. In addition, in virtue of (2)
the following inequalities

o1
At an [ {Iun(@) 2~ [po (0]} v
W

<K3(hn+1/n)/n

are true. Hence the following estimate takes place:

& (Ty1) < &(1) +dg(hn+1/n)/n. (4)
By means of estimate (4) we obtain
Y™ (1) = %o(T) 12 (5)
<k, {hn+an+1/n},
9 9
[ @Pdr< [o@iPd©)
0 0

+kg{hn+1/n}/an.

From (5), using the Cauchy formula for representation
of solution of a linear differential equation, we derive

max
te[0,9]

u/arcw“w> R@}ddl (7)
< kﬁ{hn+ an+ 1/I’]},

whereS(1) = s,(d — 1)C;. Then, using (6) we deduce
that

/”ulhn

— U (1)), 1)y (1)) AT + kyfha-+ 1/n} /0t

||2dr<2/ S(1)(%(1)  (8)

Let us apply the following lemma.

Lemma 2.(Osipov and Kryazhimskii 1995) Let

U(-) € La(T;RY), v(-) € V(T;RY), ||/ )d7|| < €,
IV(t)]| < K ¥t € T. Then
9
II/(U(T),V(T))dTII < e(K+vanT;v(-))).
0

Here the symbol vdiT; v(-)) denotes the full variation
of v(-) in T. From (7), (8) and this lemma we obtain

/”ulhn

= dy{hn+1/n+an)?+ (hn+ 1/may '}

L(D12dT < v(n)

Now, by the standard scheme, we establish the
convergence™(-) to uy(-;%,(+)). Let condition 3 be
also fulfilled. Let us estimate the variation of the value

&(t) = exp(—2wyt) U™ (t) — ur (t: %, ()1

t
B [ U] |t (DI} dr.
0

Analogously to (Krasovskii and Subbotin, 1988;
Maksimov, 2000), we deduce

&(Thy1) < @Bt
where
p@(n) = hn+1/n+ v¥2(n).
This implies (3).
4. DIFFERENTIAL EQUATIONS WITH TIME
DELAY

Let a systemZ be described by the nonlinear
differential equation with time delay

X(t) = f(x(t),x(t — 1)) + Bu(t), 9)
teT=[09], X9 =%(9), se[-1,0],
where x € RY, f is a nonlinear Lipschitz

transformation from Rx R9 to RY, ue RN, B is

qx N-matrix, T =const>0,Xx,(s) € C([—T1,0];R9).
Consider the case of measurement of all coordinates,
i. e. the case when

c=1I.
Denote byu,(-) a unique input fromL,(T;RV) of
minimal norm which produces the same evolutifr)

asu; (). Thisis the input that can be approximated. Fix
time momentgy =kd/n, 1<k<n-1.

Let the following condition be fulfilled.

Condition 1. R-) = L,(T;RN).

In this case, the modé¥l is described by the linear
differential equation

yn(t) = f(& & ) +BUn () +utM(b),

t € [Tl?a TI?+1)

(10)

with the initial conditiony™(0) = &,. For simplicity
assume thak; = 7/m. The control in the model is
defined by the rule

1
= —B[&—y™" ()], t€ [, 181),

h
un(t
0=

(11)



ul,hn (t)

0B [g, Y ()]

Let sequenceéhy}, {an} be taken with the following
properties:

hh =0, an—=0, (hh+n Ha,t =0  (12)

Theorem 3.Let condition (12) be fulfilled. Then
the sequence of functionfu™(-)} defined by (11)
converges tai,(-) in L,(T;RN) asn — o.

Proof outline. The functional

H(t) = [Ix(t) =y ()l
t

+a [[lun(9) - |u(s)lds

0

is associated with the reconstruction process. The
values ofu(t) cannot be computed since they depend

on unknown values ai, (-) andy™. The control"(-)
is chosen in such a way (see (11)) thet;) satisfies
the difference equation of the following form:

i+1

BT < (@) +lhe [ (lu@lldr @3)

Ti+1

+@un/

T

llur(7)]|dT

+kg(h2+h/n+1/n?+ aZhy + a2 /n).

Namely,u®"(.) is chosen so that

u ()

‘[Ti Tiy1)

Titq

= argmin{ [ {2("(r) - & BV(9)

+ a9y ds: v () € Ly([n, 1, RY).

Further arguments also follow the standard scheme.
From the results of (Osipov and Kryazhimskii, 1995;
Maksimov, 2000), it follows

Theorem 4.Let the functionu;(-) = u:(+;x(:)) be a
function of bounded variation. Then the following

estimate of the rate of algorithm convergence holds:

")~ w20,

< ¢ a7 (hn+1/n) +cy(an +1/n+hy) Y2,

Here ¢, andc, are some constants, which may be
written in an explicit form.

5. EXAMPLE

In this section we present few numerical simulations.
We are not going to present a numerical discussion of
the method. Our goal is to illustrate the dependence
of algorithm’s output on the valub. The following
system of the second orderx;(x, € R) was
considered:

{ X1 (t) = X (t) +asin(x,(t — 1)) +uy(t)

X,(t) = bcogx,(t —T)) 4+ X,(t) + u,(t)

on time interval T = [0,2]. It was assumed that
the initial state had the form,(t) = 1+t, x,(t) =
—2cogt), for t € [-1,0]. The input was computed
by the following formulas u,(t) = t?, u,(t)
5sin(2t). In the numerical experiment, we assume
for definiteness thaf;; = x,(1;) + hsin(Mr), &, =
X,(T;) +hcogM; 1;). The following system was taken
as the model:

yi(t) = Ei1+aSin(fi—j2)+Vll(Ti)+V21(Ti)
Yo(t) = bcos(fi—jl)+Ei2+V12(Ti)+V22(Ti),

ted =[1,7,)

with initial statew, (0) = 1+ h, w,(0) = —2—h. Here

j = [t/d] denotes the integral part of the number
[t/3]. Controlsv at momentst, were calculated as
follows (see (11))

V(T) = (%) - &)/,
vlz(Ti) = _(YE(Ti)_EiZ)/a’
V(1) = Ca(Yi(n) - &)/a,
V(1) = Co(Yh(1)) - &,)/a.

In figures 1-3, the results of calculations are presented
for the case whem=5,b=3,7=1, a = 0.01,
C=1,M=10,M; =50. Fig. 1 corresponds to the
case wher = 0.001,6 = 0.001, Fig. 2—h = 0.001,

0 = 0.005, Fig. 3—h = 0.1, 6 = 0.005. In figures
1-3, solid (dash) lines represent contul) (model
controlsV(t)). As it is seen from figures, the larger

is the value of system’s phase trajectory measurement
errorh, the “worse” is algorithm’s output.
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