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1. INTRODUCTION

p

Y, u
Recently, D’Andrea (1999) presented a generalized D
L, (GL,) framework to deal with robust perfor-
mance problems involving block structured uncer-
tainty. Some applications (Wang and Wilson, 2801
b, ¢ D’Andrea and Istepanian, 2002) have shown that served when the system is perturbed. The perturba-
GL, synthesis achieves good robust performance andfion can be modelled as a multiplicative uncertainty,
is more computationally tractable than synthesis. which is widely used and computationally tractable.
Wilson (2000) gave a demonstration of a simple rela- FOr an SISO system, many types of uncertainty mod-
tionship betweeiGL, andu analyses of scalar robust els, such as an additive uncertainty, can be transformed
tracking and disturbance rejection problems. In this into the multiplicative ones (Skogestad and Postleth-
paper, we further the results in (Wilson, 2000) to de- Waite, 1996). As far as_robust performance is con-
rive tight bounds foGL, robust-performance analysis Cermed, there are two typical problems: robust tracking

problems by considering the relationship betwegn ~ @nd disturbance rejection, which were shown to be
norm, i, andGL, norm. intrinsically equivalent in (Wilson, 2000).

Fig. 1. Robust tracking.

The notation is standard and follows (Wilson, 2000) Hence, without loss of generality, we only consider the

closely. For signals| - || denotes thé., norm and for robust tracking problem .subj.ected to a multiplicative

systems it denotes the induceginorm.G K stands ~ uncertaintyA, as shown in Figure 1. A controllet

for the lower linear fractional transformation between iS sought such that the system is robustly stable and

G andK. achieves robust performance defined by
sup sup ||z < 1. 1)
A< |id]|<1
2. PROBLEM STATEMENT The GL, framework (D’'Andrea, 1999) provides the

following equivalent condition for (1) to hold

(Gl > sup (IGll+ A1) <1 @

A system achieves robust performance if only if it
is internally stable and the performance can be pre-

where
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i.e.sup, HA(N) < HGHGLZ. Similarly, if w, = o, the
A conclusion follows by lettingw, — o (Zhou et al,
1996).
Secondly, we prove the right hand side of (5).
> N
2
(IGd]l +[1Gdll)

Fig. 2.N — A structure. < 2(]|G,d|[*+/G,d[?)
andS= (1+PK) ™1, T =PK(1+PK) . Note that (2) = 3/ [1G,(jw)d(jw)|?+|G,(jw)d(jw)[?] dw
defines an induced norm for the syst&n 71T o
Now consider robust performance in termsofFig- = 71/700(|G1(jw)|2+ G,(jw)?) [d(jw)*dw.

ure 1 can be transformed into thé— A structure
required foru-analysis (Skogestad and Postlethwaite, Then,
1996; Zhouet al, 1996). This is shown in Figure 2,

where (T
G, Gl] [Au 0}
= , A= , = sup (|G,d| +||G,d
e o a sup (1G,d1-+ 16,4

andAp, is a full uncertainty block associated with the < /2 sup

performance transfer functioB,. It is easy to show ld]|=1

that, for this simple probleny is given by L e %

: . . =+ (2 N2V 1 i) [2
Ha(N(j©) 216, (jw)] + [G,(j0). Yoo (3) {Zn/_m(|Gl(Jw)| TG (jo)l)ld(jw)] d‘*’}

NI

and robust performance requires _ \@sup(|G1(jw)|2+ |Gz(jw)|2)
w

=v2||G|.
Therefore||G|_ < V2|G|. ©

supp;(N(jw)) <1. )

3. ARELATIONSHIP BETWEENu AND GL,
Remark 2.This lemma shows that if a system Hds
Lemma 1. robust performance subject to the uncertainty

supty(N(j@)) < [[Cllr, = V2G| (5) 1A Ap] [ < V2,

it has theGL, robust performance defined in Section 2.
It also shows thaGL, synthesis is sufficient to guar-

PROOF. Firstly, we prove the left hand side of (5). antee robust performance in termpo{Wilson, 2000).

The proof uses the fact (Desoer and Vidyasagar, 1975)
that, for any frequencyw,, it is possible to find a
sequence of finite energy signals tending to a signal
d, such that

Remark 3.From the triangle inequality,

1
V2sup(|Gy (jw)| + |G, () ) 2

Gl o
o~ |CU! < V25up(|G )|+ Gy(j0)).

Suppose the supremum @G, | + |G,|) occurs at a

finite «y,. Then, Therefore,

SgPF‘A(N) < ”GHGL2 < \@S:)quA(N),
sup ([|Gd| + [1G,d|)

[[d]|=1 i.e. the maximum relative error betwegrand theGL,
(”Gld” +]1G,d]| > norm, in this simple case, i¥2 — 1.
=sup| ———7——
440 [d]

Remark 4.The unit balls for|G,| + |G,| < 1 and
1
V2(|G,?+|G,[*)2 < 1 are shown in Figure 3.
Sincesup, iy (N) = sup,(|G;| + [G,)) andv2|G| =
1
Therefore, sup, vV2(|G,|?+1G,[?) 2, the boundary of the unit

ball for |G < 1 must lie in the shaded area in
SUR(Gy| +1Gyl) < sup (Gyd] +[1G,d) all for [|Gllg,, <
w lldl=1 Figure 3.

> |Gy (jap)| +[Gy(jawyp)
:SgF(|G1|+‘Gz|)-



G| Theorem 8(Sufficient Condition 2).Let|G; (jw)| and

A |G,(jw)| be bounded quasi-concave functions. If
1 |G, (jw)| and|G,(jw)| have their suprema ab, and
% w, respectively (sayy, < w,), then
2
1GlleL, = olr;}f<1
>|G2| ) ) 1
0 L1 {y G, (jap) P+ (1-y) G, (jay) 2} 2

for somew, € [w;, w,]. Furthermore, ifG, (jw)| and
G,(jw)| are concave functions fao € [w;, w,], then

We are now in a position to give sufficient conditions HG”GL = sup, Up(N).

under whichGL, and i robust performance analyses

are equivalent.

Fig. 3. Unit balls.

PROOF. Based on the definition of quasi-concave

Theorem 5(Sufficient Condition 1).Givenan LTI sys-  function, for anyaw, < a}, < w,,
temG = {g%igﬂ ,if |G, (jw)| and|G,(jw)| achieve  |Gi(jap)| = min{|G;(jwa)l,|Gy(jwy)[} = |Gy (jwa)l
2 . . . . .
their suprema at the same frequengy then i.e. |Gy(jwa)| < |Gy(jw,)|. Hence |G)(jw)| is a
) . monotone increasing function over the frequency
IGllgL, = szpuA(N) =[Gi(iwp)[ +IGo(jwp)l- ) (—oo, ). Similarly |G,(jw)| is also a monotone in-

creasing function over the frequengy, w,]. In ad-
dition, |G, (jw)| and|G,(jw)| are monotone decreas-
ing functions over the frequengyw,, ).

PROOF.
Note that||Gl|g, = supqy_,(G,d] + [|G.d]]). By
theGL, analysis theorem (D’Andrea, 1999; Wang and
05 (1, + ) Wisor 200m) ‘ ¢
< sup |G, d||+ sup |G,d| _ -3
[d]=1 ”GHGL _yl_:_g:Zl”Y 2G||
— Gt + Gaticy) -
= SUP[G, ()| +SUPIG, (jw)| wherey = [ol yj andy;.y, € R
= sup(|G,(jw)| +|G,(jw)l). L 3G (i
- G
@ LetG=Y"2G= yll 1(10) , then
i
Hence, Y 2Ga(je)

Hsl?p (1Gd[l+[1Gdll) <SUI0(|G1(J(U)| +[Gy(jw)]) - |G| = SUPTmax(G)
- )

1
From Lemma 1, we get =SupA2,(G"G)

sup ([|Gd| +[|G,d|| >SUI0 |G (Jw)|+ (G, (jw)]) . B . B . 1
Id ||—( 4) (1S 1)) =S{ljp(yl1\G1(Jw)\2+y2lIGz(Jw)IZ)Z-

Therefore, Thus,

1GllgL, = sUPHA(N) = |Gy (jap)| +Gy(jap)|- O )
@ 1GllGL, = g |nf 153p
1

Remark 6.This theorem appears too restrictive to be 1 2, 1 L2
useful. However, since thg and GL, syntheses al- {yl G1(J@)"+¥5Ga([@)[}
ways try to flatten the magnitudes Gf andG,, it is
quite possible thdG, | and|G,| achieve their suprema
at the same frequency. A simple case will be demon- @ Y76 (jw) P+ Y5 Gy (jw) 2
strated in Section 4.

It is clear that, for fixedy; andy,,

is monotone increasing ifi—e, w;] and monotone

Definition 7. (Boyd and Barratt, 1991) A functiom decreasing ifc,, ).
on 2 is quasi-concave if fokx,;,x, € 2 andA ¢  Therefore,

0.1, Vi 1G1(jw) + 511G, (jw)I?
F(AX 4+ (1=2)x5)) = min{f(x,), f(x;)}. can only achieve its supremum|i@,, &), i.e



1GlleL, :olgfd

1
2

{y G, (jap) P+ (1-y) G, (jay) [P}

for somew, € [w;, w,].

Furthermore, if|G,(jw)| and |G,(jw)| are concave
functions over the frequency domaine [w;, w,], by
using the Minimax Theorem (Balakrishnan, 1981), we
obtain

IGIEL
2

inf su LG, (i) 12+ V3G, (jw)|?
i1 i 01 1G5, G (1))

sup inf (y7(Gy(jw)?+¥;YGy(jw)[?)
welwy,w)]Y11Y2=1

sup inf

welowy,w,] YE[0.]

{y G (jw) P+ (1—y) YGy(jw)[?} .

Now fix w € [w;, w,] and define
fuy) =y Gy (j)[*+ (1-y) G, (jw)|?
with 'y € [0,1]. Thenf,,(y,) = 0when

)]
G, (j0)| +1G,(j)

and for anyw, f/)(y,) > 0.

yO € [07 1]

Therefore,
H f —1 H 2 1— -1 : 2
ot Iy e+ (L-y) Gy jw)
= Yo Gy (jw) P+ (1—Yp) Gy (jw)?
= (IG,(jw)[+]G,(jw)|)*.

Hence, we get
IGIIEL, = SUR(|G, (Joo)| + G,(jw)l)?,

ie., |\G||G|_2 =sup, U(N). Note the proof does not rely
on knowingw, € [w,w,] O

Proposition 9. If the scaling matrixY is allowed to be
dynamic, more specifically, if

Gy (jw)| G, (jw)l
G, (jw)| +G,(jw)| " Gy (jw)| + Gy (jw)

Y:diag{

then 1
IGliL, = Y 2G| = supu,(N).
w

PROOF. This proposition is a direct result from the
proof of Theorem 8, therefore the proof is omitted
here. O

Remark 10.When the scaling matri¥ is dynamic,
the GL, synthesis problem will become non-convex
and need “Y-K” iterations, similar to the so-called “D-
K” iterations in u synthesis.

Relative Errror (%)

Fig. 4. The relative error betwedsl, norm andyu.
4. NUMERICAL EXAMPLES

Example 1: How far coul@L, be fromu?

Suppose
G T2 +2&T;s+1
1T 4 28, Tis+1
and
G —k T#s?+ 28, T,s+1
27 T2+ 28, Tos+1

whereé; =0.7, &, =0.3, T, =1, k; =1,k, € [0.1,10]
and T, € [0.1,10. So, |G|,i € {1,2} is a quasi-
concave function with peak value at just below the
frequency%i.

G (jw)

LetG= {Gz(jw)

} andN = [G GJ.

Hence,
supp,(N) = Sgp(lGl(iw)l +1G,(jw)l)

and

1Gllew, = Hi‘l"Lpl(HGldH +[1G,d))

WhenT, = T, andk, € [0.1,10], from Theorem 5, we
observe thasup,, 1, (N) = ||G||G,_2. Whenk, = k; and

T, is very close tol;, we obtain thasup, 1, (N) =
|\G||G|_2 from Theorem 8. Then, how far &g, 1, (N)

from HG||GL2 when the parameters, andk, varies

in the domain[0.1,10/? From Lemma 1, we only
know the supremum of the relative errorv& — 1.

As a complement to Lemma 1 and Theorem 8, in
this example, we show in Figure 4 the relative error
betweer1|G||G|_2 andsup, U,(N), i.e.,

HG”GL2 —sup, Ha(N)
sup, Ma(N)
asT, € [0.1,10 andk, € [0.1,10].

x 100%

Figure 4 shows that the relative error is nearly zero in
a wide area

{(T,,k,)|T, € [0.7,1.5], ork, € [0.1,0.4)U[2.5,10}



Gy(jo) Gl + G
P = [|G1dy || + [|Gydy |
H =[G (jwy)|-[|dy | +]G,(je)| - [Idy ||
W T =2
Hence,||G| = V2.
Gy(j) o
1‘ iiiiiiiiiiiii From Figure 5, it is clear that
H suptiy (N) = sUp{[Gy (jeo)| + |Gy (jeo)|} = 1
© W and
. . 1
|G| = sup{|G, (jw)*+G,(jw)[*}2 = 1.
Gl(‘jw)—‘er(jw) ©
1F--1T—T-~-~-~---- Therefore, in this case,
| H |Glr, = V2IG] = VZsupiy(N).
) @, W

Fig. 5. The magnitude d&, (jw) andG,(jw). Example 3: Synthesis problem

and the maximum error is abodf#%when{(T,,k,)[T, € S0 far, we have only considered the robust perfor-

{0.1,10},k, = 1}. Hence, in this case, althoughand  mance analysis problems. We now give an example
GL, robust performance analyses are not equivalentof synthesis problem.

everywhere, they are very close to each other. )
Suppose the plant is

_ 01s+1
s+l
with a performance weight\{, and an uncertainty
weightW, given by
1 s+3
W= £+14s+1’

Example 2: The worst casé where
1G], = V2G| = \@SotjpuA(N)-

P s+30°
The system diagram is shown in Figure 1 and the

Here we give a worst-case example. Let

oo f1 we [w—¢&w+Eg . :
G(jw) = { 0 otherwise generalized system is
wherei € {1,2} ande € R* — 0. The specific forms p 0 i WP qd
of G; andG, are shown in Figure 5. z _woiwel [T
Define gl | u
d ()2 {A(q,T cosmt te[-T,T] —1: —P
@T 0 otherwise The minimal state-space realization of the above trans-
whereA. - — 1 . fer function matrix is
("%vT T(1+S|n2ch) ~- . -
2T A, 0 0|0 : By
Letdy, (t) =limy_, d,, 7(t), then (Zhowet al, 1996) B,Co A, 0| 0 :B,D,
lg=dgy |17 : BiCp 0 A 1B Dp
W=|G(JQ)|- Ggen=
@ D,Cp C, 0| 0 :D,Dp
We construct a signal D,Cp 0 C; | Dy 1 DyDp
424 1d, 2y 4ty 0. | R
S | G, 0 0|-1! D]
where||/d|| = 1, ||d,| = \% and||d,| = % In addi- By using theu Analysis and Synthesis Toolbox (Balas
tion, G,d = G,d, andG,d = G,d,. etal, 1998), we obtained g controller
S _ 4202456(s+93.54) (s + 30)(s+2.316)(s+ L.771)(s+ 1)
o, =

(5+2043 (s+9351)(s+10)(s+2.172)(* + L.4s+ 1)
andsup, U, (GgenxKy) = 0.1711 Note that, we chose

. . . — 1
3 This example was originally suggested in the correspondence@ Seécond-order scaling matri® in info(DND™)
with Dr R. D’Andrea, Cornell University, USA. (Balaset al., 1998).
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5. CONCLUSIONS



