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Abstract: An improved parallel recurrent neural network with canonical architecture,
named Recurrent Trainable Neural Network (RTNN), and an error based back-
propagation through time learning algorithm, are applied to a D.C. motor drive
identification and control. The unknown nonlinear dynamics of the motor together
with the load are identified by the RTNN. The trained RTNN identifier is combined
with a desired reference model and a RTNN controller in a direct adaptive control
scheme, so in order to achive a desired trajectory tracking of the motor speed and
position. Finally, the applicability of the RTNN topology and learning is illustrated
by experimental results. Copyright (©) 2002 IFAC.
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1. INTRODUCTION

Recent advances in understanding of the working
principles of artificial neural networks has given a
tremendous boost to the application of these mod-
eling tools for control of nonlinear systems, (Hunt
et al., 1992). Most of the current applications rely
on the classical NARMA approach; here a feedfor-
ward network is used to synthesise the nonlinear
map (Chen and Billings, 1992). This approach is
powerful in itself, but has some disadvantages:
the network inputs are a number of past system
inputs and outputs, so to find out the optimum
number of past values a trial and error must be
carried on; the model is naturally formulated in
discrete time with fixed sampling period, so if the
sampling period is changed the network must be
trained again; the problem associated with the
stability, convergence, and the rate of convergence
of these networks are not clearly understood; the
problem of discrete time nonlinear control is not
fully understood and there is not a framework

available for analysis; the necesary condition of
the plant’s order to be known.

Besides, to avoid these dificulties come’s shine
out the recurrent neural networks, but they still
have some disadvantages: some Recurrent Neural
Networks are not trainable in the whole, others
are not in the feedback loop, (Pham and Yildrin,
1995); some of them are applied only to the SISO
case, but not to the MIMO case, (Yip and Pao,
1994); the problem of stability is not considered
on almost the whole of them, especially in the
training period.

Along with the developments in the area of neu-
ral networks, tremendous strides have been made
in the area of nonlinear control analysis using
diferent techniques like: algebraic and diferential-
geometric ones (Isidori, 1989). These tools pro-
vided a natural basis for the analysis of dynamic
neural controllers. It is here that the recurrent
neural networks come into their own.



TGy

Fig. 1. Block diagram of RTNN.

The control strategies that can be evolved using
differential geometric techniques, involve the plant
linearisation, using what is known as linearising
state feedback. In this approach, the key principle
is the cancellation of nonlinear terms, yielding a
linear plant, which can then be controlled using
standard techniques and that’s why it’s called
globally linearising control, (Kravaris and Chung,
1987). The objective of this paper is to propose a
recurrent neural network, to derive a vector ma-
tricial error based backpropagation-like learning
algorithm and to show it’s applicability in real
time identification and adaptive tracking control
of a D.C. motor drive’s velocity and position.

The paper contents is as follows: in the first
part we have the complete description of the
Recurrent Trainable Neural Network (RTNN),
and its training algorithm; the second part is
based on the identification and control schemes
description of a D.C. Motor drive, and finally -
experimental results, are given.

2. RTNN TOPOLOGY AND LEARNING

The RTNN topology is given by the following
equations, (Baruch, et al., 1996):

Zpt1 = Judk + Brug (1)
2 =T'(2k) (2)
Uk = ©(C k) 3)

Where: (§k, Tk, ur) are output, state and input
variables with dimensions [, n, m, respectively; Jg
is a block diagonal weight matrix of the hidden
layer feedback; Bp and Cj are input and out-
put weight matrices with dimensions (nxm) and
(lxm), respectively; T'(.), ®(.) are vector-valued
activation functions, with functional elements like:
saturation, sigmoid or hyperbolic tangent. The
eigenvalues of the RTNN model ought to be placed
in the unit circle, so some restrictions on the
weight matrix J, =block-diag(Jy;), are imposed
during the learning (|Jk::| < 1).

The RTNN topology is given on Figure 1. Its ad-
joint network is given on Figure 2. The proposed
RTNN has a linear time varying structure proper-
ties like: controllability, observability, reachability,
which are proved in (Sontag and Albertini, 1994),
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Fig. 2. Block diagram of RTNN adjoint network.

(Sontag and Susmann, 1997). These properties of
the RTNN structure signify that starting from
the block-diagonal matrix structure of Ji, we can
find a correspondence in the block structure of
the matrices By and Cj, that’s show us how
to find out the ability of RTNN’s learning. The
main advantage of this discrete RTNN (which
is really a Jordan Canonical RNN model), is of
being an universal hybrid neural network model
with one or two feedforward layers, and one re-
current hidden layer, where the weigth matrix Jj,
is a block-diagonal one. So, the RTNN posses a
minimal number of learning parameters, and the
performance of the RTNN is fully parallel. The
described RTNN arquitecture could be used as an
one step ahead state predictor/estimator and sys-
tems identificator. Another property of the RTNN
model is that this model is globally nonlinear, but
locally linear. That is why the matrices J, Bk, Ck,
generated by learning , could be used to design
a controller law. Furthermore, the RTNN model
is robust, due to the dynamic weigth adaptation
law, based on the sensitivity model of the RTNN,
(Wan and Beaufays, 1996).

The general RTNN Backpropagation Throug Time
(BPTT) learning algorithm, written in a matricial
form, is given by the following equation:

Wig1 = Wi + nAWi + aAWg_y (4)

where: Wy, is the weigth matrix, being modified
(Ji, B, Cx); AW} is the weigth matrix correction
(AJy, ABg, ACk); 1 is a learning rate parameter
(In] < 1), and « is a momentum term learning
parameter (Jo| < 1). The momentum term of
this learning algorithm is used when some error
oscillations occured.

The output layer’s weigth matrix elements up-
date, for the discrete time model of the RTNN,
is realized by the following equation, (Baruch, et
al., 1996):

ACr,, = e, @, (ir,) 21, (5)

where: ACy,; is the weight update of an ij-th
element of the learned matrix Cg; ey, is the i-
th element of the output error vector; ® (4:)
is the i-th element of the first derivative of the
activation function vector, which is expressed as
a function of the output vector gy; 2, is the j-
th element of the output vector of the hidden
layer. The vector matricial form of this equation



could be obtained following the block-diagram of
the RTNN adjoint network and introducing some
other auxiliar matrices and vectors, Fig. 2.

Let us define the (Izl) diagonal Jacobean matrix:
(k) = diag|®y, (yx,)]; i = 1,...,1. So, the (lx1)
transformed output error vector is given by:

ek, = Py (ke (6)

and the output weight update matrix will be the
following:

ACk = ekl ,?A:g (7)

The weight update of the hidden layer’s weigth
matrix elements, for the discrete time model of
the RTNN, is realized by the following equation,
(Baruch, et al., 1996):

AJ]W = Ch, €k, Fki(éki) T, (8)
AByg,; = Cr,ex, T, (2k,) uk, 9)

where: AJg,,; is the weight update of an ij-th
element of the general weight matrix J, under
learning (here for sake of generality, it is assumed
that Jy is a full (nzn) weight matrix); Cy, is the
i-th row vector, taken from the transposed matrix
C7'; ey is the output error vector; Ty (2x,) is the i-
th element of the first derivative of the activation
function vector, which is expressed as a function
of the output vector of the hidden layer zz; xg,
is the j-th element of the state vector xyx; ABy,,
is the weight update of an ij-th element of the
learned matrix Bg; Uk, is the j-th element of the
input vector ug. The vector matricial form of this
two equations could be obtained introducing some
other auxiliar matrices and vectors.

Let us define the (nz1) error vector which appear
in the output of the hidden layer as:

er, = CTy e, (10)

Let us also define the (nzn) diagonal Jacobean
matrix: T'y(2x) = diag[l'y, (2,)]; i = 1,...,n. So,
the transformed hidden layer output error vector
is given by:

eks = Ui (k) ek, (11)

and the weight matrix correction of the general
weight matrix J will be the following:

AJy = g, T (12)

If the matrix J, is a diagonal matrix , J, =
diag(Jg,); © = 1,...,m; |Jk,;| < 1 (stability con-
dition imposed) , and the diagonal of this matrix
is a (nx1) vector, denoted by vJg, then the weight
update of this vector is the following:

AvJy = ep, ® Tk (13)

The update of the (nam) weight input matrix B,
is the following:

ABy, = eg, ui (14)

The next paragraph gives an identification and
control scheme, applied for a model reference
adaptive control of a D.C. motor drive velocity
and position.

3. REAL-TIME RTNN IDENTIFICATION
AND CONTROL OF A DC MOTOR DRIVE.
EXPERIMENTAL RESULTS

In this section the effectiveness of the Adaptive
Neural Control scheme is illustrated by a real time
DC motor system identification and control (in
two control experiments, separatelly for speed and
position control), using three RTNNSs, one for the
identification and the others two for the control.
The first problem here is to identify the discrete-
time nonlinear plant by means of a RTNN. Let
us assume that the equations of the DC motor
drive dynamics, separatelly for systems speed and
position, are described by the following equations,
(Weerasooriya and El-Sharkawi, 1991):

Wht1 = f[w;c7 ...7wk_m} + Vi (15)
Okt1 =3[0k, ., Ok—m] + Vi (16)

where: m is the order of the system; wy, 6 are the
DC motor angular velocity and position in time
instant k; Vj is the terminal voltage.

The RTNN T is applied as a systems identifier,
(Weerasooriya and El-Sharkawi, 1991) so to es-
timate, separatelly in two control experiments,
the values of the unknown nonlinear functions

f1) gl

The motor speed and position are estimated sep-
aratelly by the RTNN I, following the equations:

W =P[Zk); Trt1 =@k, Vi) (17)
O = P[Tx); Zrg1 = TZs, Vi (18)

where: T'[.], ®[.] denotes the nonlinear RTNN func-
tions. The main objetive of the systems identifi-
cation, using RTNN is to obtain the plant states
(separatelly for speed and position in two control
experiments), based on the weight update BPTT
learning algorithm, minimizing the mean squared
output error between the RTNN I output and the
output of the nonlinear plant. The neural control
input V; to the motor at the k** time step can be
designed as:

Vi = Nu[2x] + Na[ra] (19)

where Nq[.], Na[.] are generated by RINN feed-
back and feedforward controllers. The adaptive
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Fig. 3. Block- diagram of the adaptive control
system.

o &)E&l

(a] S ()

Fig. 4. Real-time system configuration for DC-
motor system identification and control. (a)
MatLab-Simulink and WinCon Server. (b)
WinCon Client and MultiQ. (c) Encoder. (d)
DC-motor.

control scheme is shown on the Fig 3. Here the
system controller is split in a feedback neural con-
troller NVy[.], which uses the estimated states as in-
puts, so to create a classic stabilization feedback,
and a feedforward neural controller Nz[.], which is
an adaptive system’s inverse plant model, (Hunt
et al., 1992).The identification error eg; is used
to train the RT'N Ny, and the control error ey is
used to train the RT N N, and the RT' N N¢s.

The configuration of the experimental DC motor
platform containing the control and the measure-
ment components is shown on the Fig. 4. A 24
volts, 8 amperes DC-motor, driven by a power
amplifier and connected by a data acquisition
control board (Multi-Q ™), with the PC, has been
used. The RTNNs are prrammed in MatLab®—
Simulink ~ and WinCon
Windows 95

generated code using the real-time Workshop
to achieve digital real-time control on a PC.

, which is a real-time

application that runs Simulink

3.1 First experiment. Adaptive control of a DC
motor speed

In the first experiment, the objective of the de-
signed adaptive neural control system is to drive
the DC-motor, so that its speed wy, follows a pre-
scribed trajectory ri. This is done by letting the
DC motor to follow the selected signal reference
rk, given by the following equation:

a 2 4 5 g 10

Fig. 5. Real-time adaptive neural control of a
DC-motor speed. Comparison between the
reference signal ( — ) and the DC-motor
output signal ( - - - ) in the first ten seconds
of the control experiment.
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Fig. 6. The mean square error of speed control
(MSE%).
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Fig. 7. The states of the plant, estimated by the
identification RTNN. a) first state; b) second
state; c) third state; d) fourth state.

r = 2.25sin(2wk/5) + 0.75sin(27k/3) (20)
+4.5sin(27k)

The results of the on-line DC motor drive speed
control, are given on Fig. 5, 6, 7 and Fig. 8.

For this experiment, the identification RTNN I
has the topology 1,4,1 and the NN controllers,
RTNN¢iand RTNN¢g, have the topologies 4,4,1
and 1,2,1, respectively. The learning parameters
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Fig. 8. The control signal .

for the speed control experiment are given on
Table 1.

Table 1: Learning parameters in speed control

NN n e
RTNN; 0.01 0.01

RTNN¢g;  0.01 0.01

RTNNg2  0.01  0.01

The sampling period for all signals of this experi-
ment is: To=0.01.The figures 5, 6, 7, 8, show the
performance of the adaptive neural control speed
system to track the reference set point signal. It
can be seen that the motor speed follows the ref-
erence signal trajectory, and the MSE% of control

rapidly decreases and finally reach the value less
than 1.25%.

3.2 Second experiment. Adaptive control of a DC
motor position

In the second experiment, the objective of the
adaptive neural control system designed, is to
drive the DC-motor, so that its position, 6,
follows a desired position, . This is done by
letting the DC motor to follow a selected reference
signal position r, computed by the following
equation, (Spong and Vidyasagar, 1989):

Qo+3(qy—qo)K° /t £
*2(‘11*‘10)7433/15]”3
Te= q1
d0—3(q9—aq1)k" /1
+2(q9—q1)K° /tf°

k<tf
tf <k<2tf (21)

f <k < 3tf

Where the parameters qq, q1, ty are: go = —7/2;
¢1 = m/2; and ty = 4. This signal has been
selected, because we want to test the motor with
a smooth reference signal.

The results of the on-line DC motor drive position
control, are given in Fig 9, 10, 11 and 12.

For this experiment, the identification RTNN I
has the topology 1,4,1 and the NN controllers,
RTNN¢iand RTNN¢gg, have the topologies 4,4,1
and 1,21, respectively.

20 25 30

Fig. 9. Real-time adaptive neural control of a
DC-motor position. Comparison between the
reference signal ( — ) and the DC-motor
output signal ( - - - ) in the first thirty seconds
of the control experiment.
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Fig. 10. The mean square error of position control

(MSE%).
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Fig. 11. The states of the plant, estimated by the
identification RTNN. a) first state; b) second
state; c) third state; d) fourth state.

The learning parameters for the position experi-
ment are given in Table 2
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Fig. 12. The control signal.

Table 2: Learning parameters in position control

NN n e
RTNN;  0.01 0.01
RTNN¢g¢  0.00001  0.0001
RTNN¢2 0.04 0.005

The sampling period for all signals of this ex-
periment is: To=0.01. The experimental results,
given on figures 9, 10, 11 and 12, show the per-
formance of the adaptive neural control position
system to track the reference set point signal.
It can be seen that the motor position follows
the reference signal trajectory, and the MSE%
of control rapidly decreases and finally reach the
value less than 3.5%.

4. CONCLUSIONS

In this paper, an improved parallel recurrent neu-
ral network, named Recurrent Trainable NN, with
a Jordan canonical structure, and a new matricial
learning algorithm, are proposed. The RTNN is
robust with respect to the unmodeled dynamics
and uncertainties because of its feedback topology
and its Backpropagation Through Time learning
algorithm, based on an adjoint sensitivity NN
model. This property turns it as a powerfull rep-
resentative of nonlinear maps. In the same way,
this paper confirms the RTNN identification and
control abilities by series of real-time experiments,
performed with a DC-motor drive mechanical
system. A real-time adaptive DC-motor velocity
and position tracking control schemes, containing
three RTNNs has been successfuly experimented.
The experimental results show that the unknown
nonlinear dynamics of a DC motor drive and its
unknown load, has been sucessfully captured by
the identification RTNN. The control experiment
exhibit a good performance of the real time adap-
tive neural control system and fast convergence of
all RTNNs.
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