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Abstract: A classical problem in chemical reactor design can be stated roughly in the fol-
lowing way: Given a network of chemical reactions and a specified feed, how should one
design a chemical reactor to enhance the production of certain desired species while sup-
pressing the production of undesired ones? The purpose of this article is to describe recent
work in which geometric control theory provides sometimes surprising answers to classi-
cal reactor design questions. As an example it is shown that, associated with a given re-
action network (with kinetics) and a given feed composition, there are certain exceptional
numbers — something like eigenvalues — having special significance for reactor design: A
classical steady-state CFSTR design can have an optimal conversion relative to all other
steady-state designs only if the CFSTR residence time assumes one of those exceptional
values. Copyright © 2002 IFAC
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1. INTRODUCTION

This article is intended to describe ways in which
geometric control theory underlies some surprising
recent results in the theory of chemical reactor de-
sign. It should be kept in mind that this article is
written by a reactor theorist, not a control theorist, so
there might be some naivety here. Still, results that
geometric control theory give for reactor design
seem so striking that it might be interesting for con-
trol theorists to see how their work has had impact in
another area. The connection to geometric control
theory is discussed at greater length in (Feinberg,
2000a,b). These constitute the last two articles of a
three part reactor design series that began with
(Feinberg and Hildebrandt, 1997).

Expository articles by Kravaris and Kantor (1990a,b)
and by Kravaris and Arkun (1991) have already been
extremely helpful in bringing geometric control the-
ory to chemical engineering. Moreover, important
prior work by Palanki, Kravaris and Wang (1993,
1994) on optimal policies in batch reactor operation

is close in spirit to (Feinberg, 2000b) but somewhat
different in context and method. Whereas work by
Palanki et al. is based largely on the Pontryagin
maximum principle, the results in (Feinberg,
2000a,b) derive directly from a geometric control
theory paper by Hermes (1974).

To describe, in a simple way, just how control theory
naturally informs reactor design, it will be useful to
focus on a very narrow and very old issue in reaction
engineering: the suitability of the steady-state
CFSTR as a reactor choice for producing an optimal
yield. This will pave the way for remarks of a more
general nature. For the sake of simplicity, attention is
limited to incompressible mixtures and isothermal
designs, but it will be clear how control-theoretic
ideas enter the scene in a more general setting.

To set the stage, consider a chemistry of N species,
Ay, Ay, ..., AN, among which might occur many cou-
pled reactions. Suppose that the species formation
rate function is r(-): R" — R". That is, r(c) is the



local production rate per unit volume of A;, due to
the occurrence of all chemical reactions, when the
local vector of molar concentrations is ¢ =

[C17025 .. ‘7CN]'

Example: The well-studied van de Vusse reaction
network taken with the mass-action rate constants

1 k
A =>4, — A4,
. (1)
24, — 4,
indicated, gives rise to the species formation rate
function

r(c) := [-c; - 2k'c;%, ¢i - kea, K'ei? keo]. (2)

Now, in the general situation, suppose that a feed
stream of composition ¢ e R is available, and sup-
pose that, as indicated broadly Fig. 1, the stream is
passed to some reactor arrangement of unspecified
(steady-state) design. The design-dependent effluent
composition is denoted ¢”'. The aim is to choose the
reactor arrangement so that ¢ is optimal, in a sense
to be discussed shortly. The candidate reactor ar-
rangements are broad in scope and might, for exam-
ple, consist of combinations of classical reactor types
— plug flow reactors (PFRs), continuous flow stirred
tank reactors (CFSTRs), or differential sidestream
reactors (DSRs).
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Fig. 1. Schematic of a general reactor configuration

Whatever the design, the relationship between ™
and ¢" is constrained by stoichiometry. In fact, if S
denotes the smallest linear subspace in R" that con-
tains the range of r(-), then ¢”** must lie in the set

"+S:={c"+6e R :6¢eS} (3)

(In most instances, S will be the span of the reaction
vectors for the underlying network of chemical reac-
tions (Feinberg, 1987).)

A typical objective might be maximization of the
effluent concentration of some valued species, say
An. More generally, one might want to maximize the
value of a linear objective function, say

out:

(p(c ) ::plclout+pzczout + ... +pNCNOUt- (4)

(Maximization of the effluent concentration of Ay
corresponds to the special case p; = p, =...= pn.1=0,

pn = 1.) Still more generally, one might want to
maximize the value of some convex function of ¢™'.
In each of these cases, it is not difficult to see that, if
the maximum is strict, then the maximizing ¢ can-
not lie in an open set' in ¢ + S consisting of compo-
sitions attainable from ¢™ by steady-state reactor con-
figurations, for then there would be an attainable
composition nearby that does as least as well. That
is, the maximizing ¢** must lic on the boundary of
the set of compositions attainable from ¢™ by steady-

state designs.

The narrow question to be considered is this: What
can be said, in concrete terms, about circumstances
under which a single classical CFSTR, operating at
steady state and with some judicious choice of resi-
dence time, might produce the optimal effluent rela-
tive to all other steady-state reactor arrangements?
More precisely, we ask about circumstances under
which the effluent composition from a single steady-
state CFSTR might lie on the boundary of the set of
compositions in ¢" + S attainable from ¢" by means
of all conceivable steady-state reactor configura-
tions. (This is a necessary condition for the CFSTR-
only design to provide a maximizing effluent relative
to any of the objective functions described earlier.)

1t will be argued here, from a control-theoretic view-
point, that there are only certain exceptional, dis-
crete residence times for which this necessary condi-
tion might be satisfied and that these exceptional
residence times (if there are any at all) are comput-
able from r(-) and ¢™ . (To make a rough analogy, the
special residence times are something like eigenval-
ues.)

2. CRITICAL CFSTRs

Suppose that a perfectly mixed CFSTR with feed
composition ¢" and residence time 8* > 0 gives rise
to an effluent composition ¢* that lies on the bound-
ary of the set of compositions attainable from ¢" by
means of all steady-state designs (not necessarily
CFSTR designs). The simple design under consid-

Residence time 0*

Fig. 2. A critical CFSTR

eration is depicted in Fig. 2 . Note that ¢* and 0*
must together satisfy the steady-state CFSTR mole
balance

! References to open sets, boundary, and interior are
to be understood in the sense of the relative topology
that ¢™ + S inherits from R".



r(c*) + % (" —c*)=0. %)

Now consider the arrangement shown in Fig. 3.
There, the CFSTR depicted in Fig. 2 is followed by a
steady-state differential sidestream reactor (DSR) in
which the sidestream composition is ¢™. The local
sidestream addition rate (volume of sidestream added
per unit reactor volume) is denoted o(t), where T
denotes the local value of the DSR residence time.
(This is the time that a particle entering the mouth of
the reactor takes to reach the local axial position. See
(Feinberg and Hildebrandt, 1997).)
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Fig. 3 . A CFSTR-DSR series

The differential equation governing the mixture
composition in the DSR is

€ (1) = r(c(1) + oT)(c" - ¢(1)) (6)
subject to the initial condition
c(0) = c*. (7

Here the overdot indicates differentiation with re-
spect to T. The sidestream addition rate policy is
chosen by the designer.

Note that if o(-) is chosen such that o(t) = 1/6* for
all T2 0, then eq. (5) implies that ¢(t) = c* is a so-
lution of egs. (6)-(7). This is to say that the composi-
tion will remain unchanged along the DSR, and, in
particular, that ™" = ¢*.

Now consider small variations of the choice a(t) =
1/6*, in particular those of the form

am5%+mx ®)

where €(-) takes small values. (At the very least, we
require that |e(-)] < 1/6* so that o(-) takes positive
values in eq. (8).) If, by suitable manipulations of
€(+), it is possible to attain, at the DSR outlet, all
compositions in a small open ball around c¢*, then ¢*
could not lie on the boundary of all compositions
attainable from ¢" (contrary to what had been sup-
posed).

Thus, for ¢* (and 0*) to be critical is the sense sup-
posed, it is necessary that, with respect to the differ-
ential equation

é=mwﬁwhowmwwx®

there are, in every (small) open ball around ¢*, com-
positions that cannot be accessed any choice of
(small) €(+). In control-theoretical terms, this is to say
that eq. (9) should not be locally controllable from
¢*. For the given r(-) and ¢, the denial of local con-
trollability will turn out to constrain ¢* (and 6*) se-
verely.

3. RESULTS DERIVED FROM
A PAPER BY HERMES

(Hermes, 1974) contains deep controllability results
that play a crucial role in both (Feinberg, 2000a) and
(Feinberg, 2000b). These results subsume, but are not
limited to, questions about controllability from a rest
point of the uncontrolled differential equation. More
broadly, the Hermes results address issues of con-
trollability along a nontrivial trajectory of the uncon-
trolled equation. Although earlier results (from other
authors) about controllability from a rest point would
have sufficed to discuss critical CFSTRs, we cite the
Hermes paper in particular because its wider scope
has implications for broader questions about optimal
reactor design. These are discussed briefly in Section
4 and, more generally, in (Feinberg, 2000a).)

To cast the critical CFSTR question into a standard
control-theoretical form, let

f(c) :=r(c) + # () (10)

and

g(c) :=c"—c. (11)

Then eq. (9) becomes

¢ =f(c) + &(7) g(o). (12)

Note that ¢* is a rest point of the uncontrolled equa-
tion ¢ = f(c).

In this case we say that we say that eq. (12) is locally
controllable from ¢* if there is an open ball (in ¢™ +
S) with center at ¢* such that each point in that ball
is, by means of a suitable choice of €(-), reachable
from c¢* along a solution of eq. (12).

Adapted to the situation at hand, the results in (Her-
mes, 1974) indicate that for eq. (12) not to be locally
controllable from c¥*, it is necessary that the follow-
ing condition be satisfied (Feinberg, 2000b):

det[c*—c™, dr(c*)(c*—c™), (dr(c*))*(c*—c™),...,
(dr(c*))s-1 (c*fci"), m;, my,...,myg] =0 (13)

Here dr(c*) denotes the derivative of r(-) at c*,
(dr(c*))* is the k™ power of dr(c*), s is the dimen-
sion of S, and {my, m,,..., my-g} is any fixed line-
arly independent set of vectors orthogonal to S. (The
particular choice of the mj is of no consequence. If



eq. (13) is satisfied for one such choice, it will be
satisfied for all others. )

For reasons explained at the close of Section 2, eq.
(13) becomes a necessary condition that ¢* must
satisfy if it is to lie on the boundary of all composi-
tions attainable from ¢™ by means of steady-state
designs.

Now let
A(c):=

det[c—c™, dr(c)(c—c™), (dr(c))*(c—™),...,
(dr(c))s_1 (c—c™), my, m,,..., My (14)

Loosely speaking, the scalar equation A(c) = 0 de-
fines an N — 1 dimensional surface in R", consisting
of all compositions that might satisfy the non-
controllability condition.

On the other hand, the vector equation
1 in
r(c) + E(C -¢)=0 (15)

describes the locus in R, of compositions that
might emerge from a CFSTR having feed composi-
tion ¢™. It is useful, though not always accurate, to
think of that locus as a curve in R, parameterized
by 6.

Thus, the intersection of compositions that solve eq.
(15) with those that solve A(¢) = 0 is the set of all
possible CFSTR effluent compositions that might be
critical. That is, these are the only CFSTR effluent
compositions that might lie on the boundary of the
set of compositions attainable from ¢ by means of
all possible steady state designs (not necessarily
CFSTR designs).

The situation is depicted schematically in Fig. 4.
The figure suggests just why, for given r(-) and ¢,
there are (at most) certain exceptional residence
times for which a CFSTR might produce an effluent
composition that is optimal relative to the class of
objective functions discussed earlier.

A©)=0

locus of CFSTR
in steady states

Fig. 4. The intersection of solutions of A(c¢) = 0 with
the locus of CFSTR steady states.

4. EXAMPLES

Detailed calculations for two examples — one analytic
and one numerical — are given in (Feinberg, 2000b).
Here we present only the results.

4.1. The van de Vusse Example. For the van de Vusse
system (1) and for a feed composition ¢ =[1,0,0,0],
it is necessary that a CFSTR residence time satisfy
eq. (16) ifiitis to give rise to an effluent composition
that respects eq. (13). That is, the CFSTR residence
time must satisfy eq. (16) if its effluent composition
is to lie on the boundary of all compositions attain-
able from ¢™ by steady-state designs. Note that there
is precisely one such (positive) residence time when
k < 2k’ and no such (positive) residence time when
k > 2k’. In the latter case, no single CFSTR operating
at steady-state can produce an optimal effluent (rela-
tive to all other steady-state designs), so long as the
objective function is in the class described earlier.

-5
gr = — V2K’ (16)

k+ k
2k'

4.2. A more complex example. Consider the reaction
network depicted in (17). The kinetics is mass-action

8
28, = A
8

e M (17)

5 A,
1
1
A A
with rate constants as indicated. For a feed
¢’ =[,14,0,0,0,0]

it turns out that there are precisely two positive
CFSTR residence times for which eq. (13). is satis-
fied:

0*=0.1216 and 6% =0.8252.

These are the “exceptional” residence times for
which a single steady-state CFSTR design might
produce an optimal effluent (relative to all other
steady-state reactor designs) for the class of objective
functions described earlier.

4. CRITICAL SIDESTREAM REACTORS

So far, attention has been restricted to conditions
under which a single steady-state CFSTR might pro-
vide an effluent that is, with respect to certain objec-
tives, optimal relative to all other steady-state reactor
designs. The aim has been to show how control-
theoretic ideas enter naturally in a simple situation.
The picture becomes substantially more complex
when similar questions are asked about differential



sidestream reactors (DSRs). In this case, geometric
control theory enters in a stronger, more sophisti-
cated way. For this reason, it will only be possible
here to discuss critical DSRs briefly and to indicate
the kind of results that geometric control theory
gives. More extended discussions are available in
Feinberg, 1999, 2000a)

Consider the (steady-state) design shown in Fig. 5.
In the figure, o (-) indicates sidestream addition rate
“law” — that is, a function of composition that tunes
the volumetric sidestream addition rate (per unit re-
actor volume) to the local reactor composition. (The
value of o (¢) is the local addition rate when the
local reactor composition is ¢. ) The DSR is gov-
erned by the differential equation

¢ =r()+ o (c)c"—¢) (18)
subject to the initial condition

c(0)=c" (19)

< e

ouc(T)

Fig. 5. A critical DSR

Now suppose that o (-) > 0 is piecewise smooth and
that it has been chosen to produce an effluent com-
position c¢* that lies on the boundary of all composi-
tions attainable from ¢™ by means of steady state
reactor designs. Moreover, consider perturbed DSR
sidestream addition rates governed by

o) = o (e(t) + &), (20)
where ¢(7) is the local composition (in the perturbed

DSR) at residence time T and where €(-) takes small
values. That is, addition rate distributions given by

eqg. (20) are small perturbations of those one would
get by adhering to the o () “law”. If every composi-
tion in a small ball around ¢* could be attained in a
DSR from ¢ by means of a suitable &(-) choice, then
the original o (-) “law” could not have had the criti-
cal properties attributed to it.

This is to say that if o (-) is to be critical in the sense
described, then it must be governed by controllability
considerations. These can be formulated in the fol-
lowing way: Let f(c) := r(c) + o (¢)(c¢™ — ¢) and
g(c) := ¢ — ¢. Then the differential equation

¢ =1(c) + &(7) g(c) 21)

should not be controllable along the trajectory given
by egs. (18) and (19). (Eq. (18) is just ¢ = f(c) .)
Denial of controllability imposes strong constraints
on the relationship that © (-) can bear to r(-) and ¢™.
These relationships are complex and again derive
from results in (Hermes, 1974). Here it suffices to
say that iterated Lie brackets of r(-) and g(-) play a
prominent role. (See (Feinberg, 1999, 2000a) for
more detail and for connections to earlier intuitive
ideas (Glasser and Hildebrandt, 1990) about DSRs in
three dimensions. See also (Palanki, et al, 1993,1994)
for work in a different context but in a very similar
spirit. )

An example from (Feinberg, 2000a) will provide the
basis for some concluding remarks.

Example. Consider the reaction network (22) taken
with mass-action kinetics. For the purpose of the

A]:Az:A:‘,:A;‘, A1+A3x_—‘A5 (22)

example, all rate constants are set to 1. For a DSR of
the kind shown in Fig. 5, let "= [1,0,0,0,0]. Theory
in (Feinberg, 2000a) indicates that, for the effluent to
be on the boundary of the set of all compositions
attainable from ¢ via steady-state reactor designs,
then the only possible piecewise smooth sidestream
addition rate “law” is the one shown in Fig. 6 .

o(c)

20140327201302 c3274 01303372 c13 cjzc4+2012c‘2 c33+4c12¢2 C3264+2L‘12L'34+2612C33C4
—4012032042—4013 cj2+ 1001202 c32+8c12c‘33—6012c‘32c4—401 &) c33 —8¢j e c32c'4—4 5 034—401 033 cy+8¢ 032042
+2 U13 U3—U13 C4+2012U2 cy+13 012U32— 11 U12U3 cy+2 012U42—2 ¢ 022 c3—¢; U2204—601 ) 032+8U1 cye3ey—=2¢p0y 042
—16¢; U33— e U32U4+12 cres U42—U1 U43 —U22032—022U3 cy+6¢y 033+10 ) U32 U4—(?34—5 U33c4—3 032U42+U3 043
—6L‘12L‘3+3 01204—4 cpeye—18¢ L‘32+26 cpeze —4c U42+202203 +02204+2U2 032—402 c3ey+2cy U42+8C33+ 11 U3204

2 3 2 2
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Fig. 6. A critical sidestream addition rate law.



Note that the sidestream addition rate law in the
example is already quite complicated despite the
relative simplicity of the chemistry. When the
chemistry gets more complicated — in particular
when the number of linearly independent reactions
increases — not only does the complexity of the
sidestream addition rate law increase dramatically,
so do the control-theoretic equations from which
the law derives. This results from the fact that, with
increasing dimensions, higher order Lie brackets
of r(-) and g(-) come into play. The increase in
complexity becomes dramatically evident in (Fein-
berg, 2000a). To make matters worse, computa-
tions of higher order Lie brackets invoke increas-
ingly higher order derivatives of r(-) . In view of
the uncertainty associated with the kinetics of even
moderately complex reaction systems and in view
of the complexity of the resulting formulae, it is
difficult to know if practical results about exactly
optimal DSR sidestream addition rates can emerge.

5. CONCLUDING REMARK

Geometric control theory gives answers to seem-
ingly simple classical problems in reactor design,
problems that are not explicitly control-theoretical
in character. It is not a fault of the theory that some
answers turn out to be far more complex than might
have been supposed. The complexity is intrinsic to
the problem at hand, not to the powerful theory
that reveals its solution. If it turns out that ap-
proximately optimal solutions are all that can be
hoped for in a practical sense, then geometic con-
trol theory has the virtue of telling us what, in fact,
is being approximated.
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