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Abstract: In this paper we represent a multimachine power system with steam valve as a 
Hamiltonian control system. Then a decentralized steam valving control scheme is 
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1. INTRODUCTION 
 

With the emergence of the large-scale power systems, 
finding the control law to enhance their transient 
stability has become imperative. Until recently, the 
majority of research in this field has been involved in 
the excitation control. However, the steam valving 
control contributes significantly not only to enhance 
the transient stability, but also to improve the 
dynamic performance of the large-scale power 
systems and suppress the system oscillation as well. 
Furthermore, under certain conditions steam valving 
control may have greater effects on the system 
stability than excitation control, since the latter only 
controls the field voltage, which in turn changes the 
synchronizing torque of the generator, while the 
former controls the mechanical output directly . Thus, 
studying and implementing the control schemes on 
valve opening of modern steam turbines will 
significantly enhance the stability of power system. 
 

The nonlinear nature and the high-dimensional 
characteristic of the large-scale power system make 
the controller design difficult. Much work has been 
done on the linearized power system model. After 
the introduction of the differential geometric tools 
(Isidori, 1995), advanced nonlinear control 
techniques have been applied to the controller design 
(Lu, et al., 1989, Chapman, et al., 1993, King, et al., 
1994, Jain, et al., 1997, van der Schaft, 1999). Based 
on differential geometric tools (Isidori, 1995), the 

controller firstly tries to cancel the inherent system 
nonlinearities in order to obtain a feedback 
equivalent linear system, then the control law is 
proposed by means of the linear system design (Lu, 
et al, 1989, Chapman, et al, 1993, King, et al, 1994, 
Jain, et al, 1997, van der Schaft,1999).However, 
control law such designed has not fully utilized the 
nonlinear nature of the power system since some 
nonlinearities can be useful to dynamical system's 
stability itself, and should be utilized in the controller 
design. Moreover, due to the complete cancellation 
of the nonlinearities, the control law may be very 
complex, which will lead to the rising of the cost of 
the control action. 
 

Very recently, port-controlled Hamiltonian (PCH) 
systems have been studied (van der Schaft, 1999, 
Cheng, et al., 1999a, 1999b Escobar, et al., 1999, 
Cheng, et al., 2000, Xi, et al., 2000, Maschke, et al., 
1999). Indeed, the Hamiltonian function in PCH 
systems is the total energy, i.e. the sum of potential 
and kinetic energy in the physical systems, and can 
play the role of Lyapunov function for the system. As 
a matter of fact, the power system is a typical energy-
producing and energy-consuming system. So it 
should be a natural way to model the power system 
as a PCH system and design controller sequentially. 
In this respect, a single-machine infinite bus power 
system has been represented by a PCH system in 
(Cheng, et al., 2000, Xi, et al., 2000, Cheng, et al., 
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1999b, Shen, et al., 2000). In Xi, et al., 2002, the 
representation of multimachine power system as 
PCH were also given. From Xi, et al., 2000, Cheng, 
et al., 1999b, Shen, et al., 2000, we have known that 
the Hamiltonian function method has some good 
properties. In this paper, further good properties will 
be shown and the nonlinear steam valving control 
will be studied by means of the generalized 
Hamiltonian control system .  
 

Since physical limitation on the system structure 
makes information transfer among subsystems 
unfeasible, decentralized controllers for 
multimachine systems must be used. There have 
been numerous results on decentralized robust 
control of power systems (Wang, et al., 1997, 
Chapman, et al., 1993, King, et al., 1994, Lu, et al., 
1996, Sun, et al., 1996, Jain, et al., 1994). The 
controller presented in this paper is also 
decentralized. 
 

In this paper, based on the generalized Hamilton 
system theory, a decentralized nonlinear steam 
valving controller is proposed to improve the 
transient stability and disturbance attenuation of 
multimachine power systems. In section 2 
generalized Hamiltonian system's concepts are 
briefly introduced. The model of multimachine 
power systems with steam valving control is 
represented as a generalized Hamiltonian system in 
section 3. Sections 4 and 5 discuss the stability and 
disturbances attenuation in the sense of ∞H  using 
the generalized Hamiltonian control system's theory 
respectively. Sections 6 and 7 give simulation results 
about a three machine system to support the 
theoretical claims. Simulations show that the 
resulting decentralized nonlinear controller can 
guarantee the overall stability of the multimachine 
power systems. 
 

 

2. DYNAMICAL MODEL 
 

Consider an n-machine system. Based on the rotor 
motion equations and the generator power output 
equations in a multi-machine system, we can obtain 
the swing equations of the generator (Lu, et al., 1993, 
Lu, et al, 2001): 
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where iδ is the power angle between the q-axis 

electrical potential vector qiE
�

and a reference bus 

voltage vector REFV
�

 in the system, in rad; iω is the 
rotating speed of the i-th generator, in rad/s; HiP  is 
the mechanical power of high-pressure (HP) turbine, 
in per unit; 'qiE  and 'qjE  are the q-axis internal 
transient electric potential of the i-th and j-th 

generator, respectively, in per unit; 0miP  is the initial 
mechanical power of the i-th generator, in per unit; 

iH , HiC  are moment of inertia in second and the 
power fraction of HP turbine respectively; iiG  and 

ijB  are self-conductance of the i-th bus and the 
mutual-susceptance between the i-th and the j-th bus 
respectively, 1iw  are disturbances imposed on the 
mechanical part and 
 

( ) ( ) .
1

sin''2' ∑
=








 −+=
n

j
tjtiqjEijBqiEqiEiiGPe δδ  

If only the HP controlled valve is considered without 
consideration of the fast valving control, the dynamic 
equation of steam valving control system is ( Lu, et 
al., 1993, Lu, et al, 2001): 
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where HiHgiiH TTT +=Σ  is the equivalent time constant 
of HP turbine, HgiT  the time constant of oil-
servomotor of regulated valve of HP turbine, HiT  the 
time constant of HP turbine, Hiu  the electrical 
control signal from the controller for the regulated 
valve, 2iw  are disturbances acting on the steam 
valving system. 
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Then the dynamics can be written as a generalized 
Hamiltonian control system 
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where ,0>ip  ( ) .321
T

iiii xxxx =  It is easy to see 
that ( )xH  is bounded from below because of 

[ ].1 ππ−∈ix  
 

 

3. STABILIZATION OF THE STEAM VALVING 
SYSTEM 

 

In this section consider the stabilization of the steam 
valving system. Suppose that 021 == ii ww  
throughout the section. Firstly, choosing 

,2 iiiii vxpbu +−= the closed-loop system has the 
following form 
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Next select  
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where 0>il  are control gain which can be 
arbitrarily selected. Then the equilibrium point of the 
closed-loop system is determined by 
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Selecting ( )xH  as Lyapunov function, we have 
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Then the closed-loop system is convergent to the 
largest invariant set contained in  
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the closed-loop contained in set A is asymptotically 
stable. From the La Salle Invariant Principle 
( Slotine, et al., 1991), we know that the closed-loop 
system is asymptotically stable. So we have the 
following Proposition. 
 

Proposition 1: The multimachine power system 
model (1)-(2) can be stabilized by the decentralized 
static state feedback 
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where 0,0 >> ii pl  and .,,1 ni �=  
 

 

4. DYNAMICAL MODEL WITH EXTERNAL 
DISTURBANCES 

 

In this section consider the effect of the previous 
control (5) on attenuating disturbances for a power 
system which consists of n synchronous machines. 
Select The Penalty Signals as follows: 
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If choosing  
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 then the closed-loop system can be written as 
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Theorem 2: For the multimachine power system 
model (1)-(2)-(6), there exists a 0* >γ  such that for 
every ,*γγ ≥  there exist control laws  
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such that the closed-loop system satisfies 
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and the closed-loop system is asymptotically stable 
when 0=w . 
Proof. It is well known that if there exists a smooth 
function ( )xV  which is bounded from below such 
that  
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then the inequality (7) is satisfied. And the inequality 
(8) is equivalent to  
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Choosing ( ) ( ),xHxV α=  where ,0>α  (9) is 
converted into  
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It is easy to see that there exist positive numbers 
,,, γα il  such that (10) is satisfied. In fact, (10) is 

equivalent to 
 

( )

.

12

,
12

2
2

2
2













−+
≥

−
≥

α
αγ

α
αγ

iii

i

lpe

a                 (11) 

 

From previous section, the closed-loop system is 
asymptotically stable when 0=w . 
 

Next consider the selection of γα ,, il  in detail. 
 

In fact, for any positive numbers α  and γ , it is sure 
that there exist 0>il  and 0>ip  ( ni ,,1 m= ) such 
that 
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So the selection of α  and γ  is dependent on the 
inequalities  
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i.e., the limitation of attenuating disturbances in the 
sense of ∞H  is determined by the system itself. 
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Remark: In fact, we give a new design method for 
nonlinear control system other than differential 
geometric method. The procedure is as follows. 
 

Step 1: Represent a nonlinear control system as a 
generalized Hamiltonian control system. This step 
always can be realized. 
 

Step 2: Find a controller such that the closed-loop 
system can be represented as  
 

( ) .21 wgvgHRJx ++∇−=D  
 

Step 3: Check whether the dynamical system 
( ) HKggRJx ∇−−= 11D is asymptotically stable in 

the largest invariant set of 
{ }0,0: 11 =∇=∇= HKggHRxB T , where K  is a 

positive matrix. If so, then the system can be 
stabilized. If not, go back to step 1. 
 

Step 4: Find the desired gain matrix K  such that the 
closed-loop system has the property of attenuating 
disturbances.  
 

 

5. A THREE MACHINE EXAMPLE 
 

A three-machine example system shown in Figure 1 
is chosen to demonstrate the effectiveness of the 
proposed nonlinear decentralized controller. 
 

 
Fig. 1 A three machine example 

 
The system parameters used in the simulation are as 
follows ( Wang, et al., 1997): 
 

Table 1 System parameters 
 

Syst para   Gen  #1   Gen  #2   
dx (p.u.)   1.863  2.36  

'dx (p.u.)   0.257  0.319 

Tx (p.u.)    0.129    0.11 
D (p.u.) 5 3 

'0dT (p.u.)   6.9       7.96 
H  (s)  8         10.2 

adx (s)  1.712  1.712 

ck         1  1 

0ω (rad/s)  314.159 314.159 

MC          0.7  0.72 

HC          0.3 0.29 

0mP          0.82 0.8 

iHT Σ          0.398 0.4  
 



 

     

In the example system, since the generator #3 is a 
slack bus, we have .01'3

o
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see that 
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where 21 , ll  and 21 , pp  are positive. In simulation 
we select .3,2,2.0,1.0 2121 ==== ppll  
 

 

6. SIMULATIONS 
 

In this section the simulation results concerning the 
dynamic behavior of the three-machine system under 
the presented control law are shown. A symmetrical 
three-phase short-circuit fault occurring on the 
transmission line near bus 4 is considered. 
 

From figure 2, it is well shown that under the 
proposed control law, the dynamic system is 
stabilized under the fault that occurs at 0.1sec and is 
cleared at 0.3sec. 
 

 

 
 

Fig. 2 The responses of closed-loop systemsunder the 
fault that occurs at 0.1sec and is cleared at 0.3sec. 

 

To verify the effects of the proposed control law, 
further simulation is conducted. In Figure 3, the fault 
occurs at 0.1sec, and is cleared at 10sec which 
endangers the transient stability of the dynamic 
system much more seriously. From these Figures, it 
is well shown that: 
 

1. Due to the long interval of the fault, during the 
fault time (0.1sec to10sec), the machine rotor angle 

1δ  increases rapidly while 2δ  decreases in a fast way. 
The speeds of the machine begin to oscillate, and the 
system is in the great danger of losing synchronous 
stability. It verifies the well known fact that the 
system stability is in much relevance to the clearing 
time. 
 

2. However, even in such a serious fault, after the 
clearing of the fault, the proposed control law has 
still stabilized the dynamic system under 
investigation . 
 

3. Carefully scrutinizing the Figure 3, another 
interesting but meaningful conclusion can be drawn. 
Figure 3 shows that, even during the fault, the speed 
oscillation died away under the proposed control law, 
which shows the damping effects of our controller. 
Further investigation shows that damping effects of 
the controller is a natural result of Hamiltonian 
control which based on the Lyapunov's energy 
function. 
 



 

     

 

Fig. 3 The responses of closed-loop systemsunder the 
fault that occurs at 0.1sec and is cleared at 10sec. 

 

 

7.CONCLUSION 
 

In this paper we apply the generalized Hamiltonian 
control system's theory to large-scale power systems 
with steam valving control. A simple decentralized 
control scheme is obtained, which fully utilizes the 
nonlinear nature of power systems and is easy to be 
implemented technically. Simulation shows that the 
proposed control law is effective to enhance the 
transient stability, and to improve the dynamic 
performance of the large-scale power systems.  
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