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Abstract: Repetitive processes are a distinct class of 2D linear systems with applications in
areas ranging from long-wall coal cutting and metal rolling operations through to iterative
learning control schemes. The main feature which makes them distinct from other classes of
2D linear systems is that information propagation in one of the two independent directions
only occurs over a finite duration. This, in turn, means that a distinct systems theory must
be developed for them, which can then be translated (if appropriate) into efficient routinely
applicable controller design algorithms for applications domains. In this paper, we give
some new results on LMI based stabilization and robust control of so-called discrete linear
repetitive processes and illustrate them by application to a metal rolling process.
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1. INTRODUCTION

The essential unique characteristic of a repetitive,
or multipass, process is a series of sweeps, termed
passes, through a set of dynamics defined over a fixed
finite duration known as the pass length. On each pass
an output, termed the pass profile, is produced which
acts as a forcing function on, and hence contributes
to, the dynamics of the next pass profile. This, in turn,
leads to the unique control problem for these processes
in that the output sequence of pass profiles generated
can contain oscillations that increase in amplitude in
the pass to pass direction.

To introduce a formal definition, let a < +o denote
the pass length (assumed constant). Then in a repeti-
tive process the pass profile y,, 0 <t < a, generated
on pass k acts as a forcing function on, and hence
contributes to, the dynamics of the next pass profile
Vi1, 0 <t <a, k>0.

Physical examples of repetitive processes include
long-wall coal cutting and metal rolling operations
(Edwards, 1974; Smyth, 1992). Also in recent years
applications have arisen where adopting a repetitive
process setting for analysis has distinct advantages
over alternatives. Examples of these so-called algori-
thmic applications of repetitive process theory include
classes of iterative learning control schemes (Amann
et al., 1998) and iterative algorithms for solving non-
linear dynamic optimal control problems based on the
maximum principle (Roberts, 2000).

Attempts to control these processes using standard (or
1D) systems theory/algorithms fail (except in a few
very restrictive special cases) precisely because such
an approach ignores their inherent 2D systems struc-
ture, i.e. information propagation occurs from pass
to pass and along a given pass, and the pass initial
conditions are reset before the start of each new pass.
In seeking a rigorous foundation on which to develop



a control theory for these processes it is natural to
attempt to exploit structural links which exist between,
in particular, the class of so-called discrete linear repe-
titive processes and 2D discrete linear systems descri-
bed by the extensively studied Roesser and Fornasini
Marchesini state space models (for background on
these models see, for example, the relevant references
in (Rogers and Owens, 1992; Rogers et al., 2002)).
Discrete linear repetitive processes are distinct from
such 2D linear systems in the sense that information
propagation in one of the two independent directions
(along the pass) only occurs over a finite duration.

In this paper, we first introduce the essential unique
features of repetitive processes and, in particular, so-
called discrete linear repetitive processes which are
the subject of this paper by modeling of a simple
metal rolling operation. Following this, new results on
LMI based stabilization and robust control of this class
of repetitive processes will be given and applied to
a representative example of the dynamics which can
arise in metal rolling operations.

2. METAL ROLLING AS A REPETITIVE
PROCESS

Metal rolling is an extremely common industrial pro-
cess where, in essence, deformation of the workpiece
takes place between two rolls with parallel axes re-
volving in opposite directions. One approach here is
to pass the stock (i.e. the metal to be rolled to a pre-
specified thickness (also termed the gauge or shape))
through a series of rolls for successive reductions
which can be “costly’ in terms of the equipment requ-
ired. A more economic route is to use a single two high
stand, where this process is often termed ‘clogging’
(see (Edwards, 1974)).
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Fig. 1. Metal rolling process

In practice, a number of models of this process can
be developed depending on the assumptions made on
the underlying dynamics and the particular mode of
operation under consideration. Here we consider the

dynamics of the case shown schematically in Figure
1, where ZCS denotes the zero compression separation
and OP the output sensor. The particular task here is
to develop a simplified (but practically feasible) model
relating the gauge on the current and previous pass
through the rolls. These are denoted here by y, (t) and
Y, (t) respectively and the other process variables
and physical constants are defined as follows:

Fu (1) is the force developed by the motor;

Fs(t) is the force developed by the spring;

M is the lumped mass of the roll-gap adjusting mecha-
nism;

A, is the stiffness of the adjustment mechanism spring;
A, is the hardness of the metal strip;

A, . )
A= Ali Azz is the composite stiffness of the metal strip

and the roll mechanism.

To model the basic process dynamics, refer to Fig 1
where the force developed by the motor is

Fu (t) = Fs(t) + My(t), 1)
(where y(t) is defined in Fig. 1) and the force develo-
ped by the spring is given by

Fs(t) = A1[y(t) +y, (D]. 2
This last force is also applied to the metal strip by the
rolls and hence

Fs(t) = Aalyi1 (D) = yi(B)]- 3)
Hence the following linear differential equation mo-
dels the relationship between y, (t) and y, ,(t) under
the above assumptions

Fl)+ G50 = a0+ a0

A

iz, ) (4)
Suppose now that differentiation in (4) is approxima-
ted by backward difference discretization with sam-
pling period T. (For analysis and discussion of the
choice of the sampling period to discretize diffe-
rential linear repetitive processes see, for example,
(Galkowski et al., 1999)). Then the resulting diffe-
rence equation is

V() =agy, (t—=T) +ay,(t—2T)
+agy,_q(t) +azy,_,(t—T)

+agy,_1(t—2T) +bFy(t), (5)
where
a—_2M _ M
L7AT24M 27 AT24M
= —2 <T2+M> a,= ——2AM __
3T AT24+M M)A A (AT24 M)
AM —AT?2

BT A ATEEM) DT A, (AT M)
Now set t = pT and y,(p) = Y, (pT). Then (5) can be
written as



X (P +1) = AX(p) + Bu(p) + Boyy_1(P)
Yi(P) = Cx,(p) + Du(p) + Dgy,_1(P), (6)

where u, (p) = Fy(p) and

X(P)=[Y(P—1,p-2) y_s(P—L.p-2)]"

V(P—1,p—2):= [y (p—-1) y(p-2)]
Yier(P—1,p=2) = [Ye1(P—1) y_1(P—2)]
a, a, a, ag
1000
A=1000 0
0010
o 5|
B=1o 1|
0 0
C=[a, a,a,a5], D=b, Dy=as.

The model of (6) is a particular example of that
for discrete linear repetitive processes where, in the
general case on pass k, x,(p) is the n x 1 state vector,
Y, (p) is the m x 1 pass profile vector and u, (p) is the
I x 1 control input vector. To complete the process
description it is necessary to specify the pass length
and the initial, or boundary, conditions, i.e. the pass
state initial vector sequence and the initial pass profile.
Here the boundary conditions will be specified in
the following section where controller design is the
subject. In these design studies, the data used is A; =
600, A, = 2000, M = 100 and T = 0.1. This yields
A = 461.54 and the following matrices in (6)

1.9118 —0.0047 —1.4706 0.7353

1 0 0 0
A=1 0 0 0o |’
0 0 1 0
—2.2059 x 107° 0.7794
0 0
B= 0 » Bo= 1
0 0

C=[1.9118 —0.0047 —1.4706 0.7353],
D =2.2059 x 10>, D, =0.7794.

3. STABILIZATION

The stability theory (Rogers and Owens, 1992; Rogers
et al., 2002) for linear repetitive processes is based
on an abstract model of the underlying dynamics in
a Banach space setting which includes all such pro-
cesses as special cases. In effect, this consists of two
distinct concepts termed asymptotic stability and sta-
bility along the pass respectively where the former is
a necessary condition for the latter. Noting again the
unique control problem for these processes, asymp-
totic stability demands that bounded input sequences

produce bounded output sequences (in a well defined
sense) over the finite pass length and stability along
the pass demands that this property holds independent
of this parameter.

When applying this theory to discrete linear repetitive
processes it is necessary to properly model the initial
conditions, termed the boundary conditions in repe-
titive process theory, i.e. the pass state initial vector
sequence and the initial pass profile. (In particular, it is
known (see (Owens and Rogers, 1999) (for differential
linear repetitive processes with a direct extension to
their discrete counterparts) that if the pass state initial
vector sequence is an explicit function of the previous
pass profile then this alone can cause instability.) Here
these are taken to be of the form

Xt1(0) =dy, 1, k>0

where d,_; is an nx 1 vector with constant entries
and y(p) is an m x 1 vector whose entries are known
functions of p. With these boundary conditions, the
following set of necessary and sufficient conditions
for stability along the pass is the starting point for the
results in the remainder of this paper.

Theorem 1. Discrete linear repetitive processes de-
scribed by (6) and (7) are stable along the pass if, and
only if, the 2D characteristic polynomial

Ih—z,A —-2,B,

C (z4,2,) = det "2, Im—12,D, (®)
satisfies
C(z1,2,) #0,V (2,25) € U’ 9)
where
U°={(z,25) : 2| <L) <1} (10)

Note that (9) gives the necessary conditions that
r(Dy) < 1 (asymptotic stability) and r(A) < 1 which
should be verified before proceeding further with any
stability analysis.

Now define the following matrices from the state
space model (6)

~ _[AB, ~ |00
A= [O A } A,= {C DJ‘ (11)
Then we have the following sufficient condition for

stability along the pass of processes described by (6)
and (7) (for a proof see (Rogers et al., 2001)).

Theorem 2. Discrete linear repetitive processes de-
scribed by (6) and (7) are stable along the pass if 3
matrices P = PT > 0 and Q = QT > 0 satisfying the
following LMI

AlPA,+Q—P AJPA,

AL P <0. 12
AJPA; AJPA,—Q (12)



In terms of the design of control schemes for discrete
linear repetitive processes, most work has been done
in the iterative learning control area (see, for example,
(Amann et al., 1998)). Here it has become clear that a
particularly powerful control action comes from using
(state) feedback action on the current pass augmented
by feedforward action from the previous pass. Here
we consider a control law of the following form over
0<p<a,k>0

U 1(P) = KX 1(p) + Koy (p)

gl e

where K; and K, are appropriately dimensioned ma-
trices to be designed. This results in the following
condition for closed loop stability along the pass

Cel24,2,) #0, ¥ (2,,2,) €U° (14)
where

|n_ZlA —Zléo . :| . (15)

Cc(z,2,) :=det [ ¢ In-2,B,

with A= A+BK,, By =By +BK,,C=C+DK,, Dy =
Dy + DK,.

Now introduce the matrices
-~ B| = 0
6863w

Theorem 3. Closed loop stability along the pass holds
if ImatricesY =YT >0,Z=2" >0, and N such that
the following LMI holds.

zZ-Y 0  YA]+NTB]
0 -Z YAJ+NTB] | <0. (17)
AY +B,N AY +B,N  —Y

Also if this condition holds then a stabilizing K for the
control law (13) is given by

K=Ny~ L (18)
In the particular example considered here, the under-

lying LMI test is feasible and the following K gives
stability along the pass closed loop

K=1x10*[K; K,], (19)
where
K, = [8.5536 —0.0046 —6.0744],
K,=[2.7369 3.4478]. (20)

In this numerical example, the resulting closed loop
system is again of the form (6) where B and D are as
before but now

[0.0249 —0.0057 —0.1307 0.1316

A 1 0 0 0

- 0 0 0 0 ’
| 0 0 1 0
[0.0189
0

By= 1 , (21)

| O

C =[0.0249 —0.0057 —0.1307 0.1316 ],
D, = 0.0189. (22)

In the design of control laws for discrete linear repeti-
tive processes, stability along the pass will often only
be the minimal requirement. In particular, a key task
will be to ensure that the example under consideration
retains this stability property in the presence of pro-
cess parameter variations. The analysis which follows
in the remainder of this paper produces new results
on this general area and again uses the metal rolling
model as an illustrative example.

4. ROBUST CONTROL

In this section, we develop the first major results on
an LMI approach to stability analysis in the presence
of uncertainty in the process definition. To begin,
introduce the so-called augmented process and input

matrices as
_|A By | B
¢_[C DO}"“—{D] (23)

Then here we treat the case when these matrices are
subject to additive perturbations defined as follows

®p = D+ AD (24)
W, =W AY, (25)

where

_ [bA 8B, _[aB
Am_{ACADO},Aw_{AD}. (26)

Also we assume that the uncertainties here have the
following typical structure

[A@AW]:[EﬂF[El E,]. 27)

where the matrices on the right-hand side are of com-
patible dimensions and also FTF < I.

Now introduce the following matrices.

— [pAMB,)] = [0 0
APy = { 0 0 }Aq’z_[ac ADO} 28)
@l:ﬁﬂ AA‘“f{AD]

Then we can write A® and AW in the form



A® = Ad, +Ad, = H,FE, + H,FE,  (29)
AY =AW, + AW, = H,FE,+H,FE, (30)

where
< _|H| 5 [0
Hl_[o},Hz_[HZ] (31)

The LMI sufficient condition for stability along the
pass given in Theorem 2 applied in this case is equ-
ivalent to the existence of matrices P = PT > 0 and
Q=Q" > 0such that

ATPA+Q <0, (32)
where

and we now have the following result.

Theorem 4. Discrete linear repetitive processes de-
scribed by (6) and (7) whose defining matrices have
the uncertainty structure (28)—(30) are stable along the
pass if 3 matrices P = PT >0, Q = Q" > 0 such that

~ o~~~ T PN ~
(A+AFE,) P(A+AFE)+Q<0, (34

A~

A=[A, A, F=1,oF E, =1,0E, (35

and ® denotes the matrix Kronecher product. Also it
is well known that, for any choice of Q, FTF < I, 3
P > 0 such that (34) holds if, and only if, 3 a scalar
€ > 0 such that

—P 1y eAAT A
T . ~|<O. 36
AT e 'EJE;+Q (36)

Now we have the following result which gives a suf-
ficient condition, expressed in terms of an LMI, for
stability along the pass under the uncertainty structure
defined above.

Theorem 5. Discrete linear repetitive processes de-
scribed by (6) and (7) whose defining matrices have
the uncertainty structure defined by (28)—(30) are sta-
ble along the pass if 3 matrices Y =YT > 0 and
Z =Z" > 0 such that the following LMI holds

[ Y AY AY eH eH, 0 0
YAl Z-Y 0 0 0 YE] ©
YA, 0 -Z 0 0 0 YE]
eHf 0 0 —e 0 0 o0 |<O
eH) 0 0 0 —e 0 0
0O EY 0 0 0 —& 0
0 0 EY O 0 0 —el]

(37)

and the dimension of the identity matrix here is as
required.

Proof: First make the substitutionsY =P~1and Z =
Q~1, apply the Schur’s complement formula to (36),

and follow this by an obvious congruence transforma-
tion. The result then follows immediately.

The following result gives a solution of stabilization
problem under the uncertainty structure defined above.

Theorem 6. Discrete linear repetitive processes de-
scribed by (6) and (7) whose defining matrices have
the uncertainty structure defined by (28)—(30) are sta-
ble along the pass under the control law (13) if 3 a
scalar € > 0 and matricesY =YT >0,Z=2"T >0,
and N such that the following LMI holds. In which
case the stabilizing controller K is given by (18).
M%_l M12 Ml3
M%2 M%2 M, | <0, (38)
[Ml3 Mas M33J
where
—Y Gy Gy
M,=|GlLZ-Y 0 |,
G; 0 -Z
Gy, =AY +BN,
Gy =AY +B,N,

M, eH,
Mp=1 0 0 |,

0

0

0 0
My;= | YE{ +NTE] 0 ,
0 YE{ +NTE]
—&l 0
Mzz = [ 0 —sl}’
00
Mz = [o o}’
—&l 0
M33_[ 0 —sl}

In the numerical example considered in this paper, we
consider the case when in (29)-(31)

0.2311 0
0 0
Hi=| 0 |,H,=| 0
0 0

0 0.6068
0.4859
0.8912

Ef =1.0x10°°| 0.7620 | ,
0.4564
0.0185

E,=8.2140x 107°

In this case the LMI of Theorem 6 is feasible and this
yields the following controller matrix

8.50241493
—0.0207
~6.3857 |. (39)
3.2705
3.1746

KT =1.0x10*



5. CONCLUSIONS

Linear repetitive processes are a distinct class of 2D
systems of both theoretical and practical interest. The
feature which distinguishes them from, in particular,
other extensively studied classes of 2D linear systems
is that information propagation in one of the two
independent directions (along the pass) only occurs
over a finite duration. This means that a distinct sys-
tems/controller design theory must be developed for
them.

Previous work has focused, in the main, on stability
theory and associated tests. This has resulted in a ri-
gorous stability theory supported by computationally
feasible stability tests. A key feature of this work is
that, unlike the 1D linear systems case, even the ‘Ny-
quist like” stability tests which can be employed do
not provide a solid basis on which to base even initial
controller design studies. The major novel feature in
this paper is that (building on the work in (Rogers et
al., 2001)) the use of LMI based tools provides such
a basis and here we have illustrated the underlying
theoretical developments in this area using a metal
rolling model as an example. In particular, it has been
shown this approach enables us to begin the study of
robust control for these processes.
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