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1. INTRODUCTION 
 

There has been an intensive research of the problem 
of the Automatic Generation Control (AGC) in the 
operation of interconnected power systems. 
Conventional approaches to AGC have been based 
on the so-called tie-line bias control concept (Cohn, 
1966) and non-interaction principle (Fosha and 
Elgerd, 1970). Dynamic area models have been 
introduced in the approaches to AGC based on the 
modern control theory, e.g. (Calovic, 1972 and 1984; 
Fosha and Elgerd, 1970; Kavin et al., 1971). The 
crucial design of AGC is mainly faced with both 
conceptual and computational difficulties, since the 
necessary information for control has to be acquired 
from power areas and generating plants spread over 
large geographic territories. Attempts to overcome 
these difficulties have been presented by (Calovic, 
1972 and 1984; Carpentier, 1985; Siljak, 1978; 
Wenkateswarlu and Mahalanabis, 1977), where the 
multi-area power system model is decomposed into 
several subsystems which are controlled separately 
by their own local AGC controllers. The inclusion 
principle has been found to be a convenient tool for 
dealing with the problem of decentralized AGC 
design in the deterministic context by imposing static 

state feedback control (Ikeda et al., 1981; Siljak, 
1991), and in the stochastic context by imposing 
dynamic LQG control (Chen and Stankovic, 1996; 
Stankovic et al., 1996 and 1999). Almost all of the 
research in AGC so far has not addressed the 
problem of robustness. The H�  control method 
reinforced by the linear matrix inequality (LMI) 
algorithms can provide the desired results. 
 
In the present paper, the H �  decentralized output 
feedback controller of AGC is designed for 
multi-area overlapping interconnected power systems 
to improve the system robustness; that is, the 
overlapping interconnected power system is 
decomposed as a group of two-by-two subsystems 
which then are decoupled by using the inclusion 
principle, and in the expended space, the 
decentralized robust H �  controllers are designed for 
the decoupled subsystems by LMI algorithm, then 
the resulting solution are contracted to and 
implemented in the original space as a decentralized 
sub-optimal robust controller of the original system. 
Simulation of the systems controlled by the new H �  
decentralized AGC display desired performance 
characteristics with a robustness characteristics 
inherent in the H �  design. 
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2. INCLUSION PRINCIPLE IN STANDARD H �  
STATE SPACES 

 
Consider a pair of linear stochastic continuous-time 
dynamic systems in standard H�  state spaces 
represented by 
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In S, the first equation describes the evolution of the 
state vector x(t)∈Rn with x(t0)=x0, driven by control 
input vector u(t) ∈ Rm and stochastic disturbance 
modeled by zero-mean white noise process w(t) ∈Rp 
(including input and observation noises) with 
covariance Rw

�
(t1-t2); the second and third equations 

describe the output and observation with the 
controlled output vector z(t)∈Rq and the measurable 
output y(t)∈Rl; it is assumed that the vector x0 is 
Gaussian with mean m0 and covariance R0, and that 
x0 and w(t) are mutually independent; matrices A, B1, 
B2, C1, C2, D11, D12, D21, D22 and Rw are constant 
matrices with appropriate dimensions. In S

~
, the 

assumptions are analogous to those in S. Our crucial 
assumption is that n � n~ , m � m~ , l � l

~ , p � p~ , q � q~. 

 
Generally speaking, a vector stochastic process � (t) is 
denoted by mean m � (t) and covariance R � (t1,t2). If � (t) 
���
	 (t), ∀ t �
� 0, where � (t) and 	 (t) are n � - and n� - 
dimensional stochastic processes, respectively, and T 
a full rank matrix, then it is said that � (t) is a strict 
expansion of 	 (t), denoted as � (t)= Es[	 (t);T], if 
n �����
� ; � (t) is a strict contraction of 	 (t), denoted as 
� (t)=Cs[	 (t);T], if n �����
� . If, for the same processes, 
m � (t)=Tm� (t), and R � (t1,t2) = TR� (t1,t2)T

T, ∀ t, t1, 
t2 �
� 0, then � (t) is a weak expansion of 	 (t), i.e. 
� (t)=Ew[	 (t);T] if n �
���
� ; and a weak contraction of 
	 (t), i.e. � (t) = Cw[	 (t);T] if n �����
�  (Stankovic et al., 
1996). There also needs the quadruplet of ordered 
pairs of full-rank matrices {(U, V), (S1, T1), (Q2, R2), 
(S2, T2)}, satisfying UV=In, S1T1=Iq, Q2R2=Im and 
S2T2=Il. 
 
Definition 1. The system S

~
includes the system S if 

there exists a quintuplet of full rank matrices 
{

nnU ~×
,

nnV ×~ ,
qq

S
~1 ×

,
mm

R
×~2

,
ll

S ~2 ×
} satisfying UV=In, 

such that for any x0 and u(t) in S the conditions 0
~x = 

Ew[x0;V] and )(~ tu =Es[u(t);R2] imply x(t)= Cw[ )(~tx ;U], 

z(t)=Cw[ )(~ tz ;S1] and y(t)= Cw[ )(~ ty ;S2], ∀ t ��� 0. 
 
There are two practically important special cases of 
inclusion (e.g., Chen and Stankovic, 1996; Stankovic 
et al., 1996 and 1999). 
 

Definition 2. The system S is a restriction of the 
system S

~
if there exists a full rank matrix such that 

for any x0 the condition 0
~x = Ew[x0;V] implies )(~ tx = 

Ew[x(t);V], ∀ t �
� 0; and the following four relations 
between the inputs and the outputs are satisfied: 
 

)(~ tu =Es[u(t);R2], )(~ tz =Ew[z(t);T1], )(~ ty = Ew[y(t);T2]; 

)(~ tu =Es[u(t);R2],z(t)=Cw[ )(~ tz ;S1],y(t) = Cw[ )(~ ty ;S2]; 

u(t)=Cs[ )(~ tu ;Q2], )(~ tz =Ew[z(t);T1], )(~ ty = Ew[y(t);T2]; 

u(t)=Cs[ )(~ tu ;Q2],z(t)=Cw[ )(~ tz ;S1],y(t) = Cw[ )(~ ty ;S2], 

(2) 
where Qi, R2, Si, Ti, i = 1,2, are full rank matrices. 
 

Theorem 1. The system S is a restriction of S
~

 if 
there exists a group of full rank matrices V, Qi, R2, Si, 
Ti, i = 1,2, such that  
 

A
~ V=VA; VB1RwB1

TVT= T
wBRB 1~1

~~         (3) 

 
and anyone of the following restriction-type 
conditions holds: 
 
   (a) 

2

~
B R2=VB2, 1

~
C V=T1C1, 2

~
C V=T2C2;  

   (b) 
2

~
B R2=VB2, S1 1

~
C V=C1, S2 2

~
C V=C2; 

   (c) 
2

~
B =VB2Q2, 1

~
C V=T1C1, 2

~
C V=T2C2; 

   (d) 
2

~
B =VB2Q2, S1 1

~
C V=C1, S2 2

~
C V=C2.    (4) 

 
Definition 3. The system S is an aggregation of the 
system S

~
if there exists a full rank matrix such that 

for any 0
~x  the condition x0 =Cw[ 0

~x ;U] implies 

x(t)=Cw[ )(~ tx ;U], ∀ t �
� 0; and the following four 

relations between the inputs and the outputs are 
satisfied: 
 
u(t)=Cs[ )(~ tu ;Q2],z(t)=Cw[ )(~ tz ;S1],y(t) =Cw[ )(~ ty ;S2]; 

)(~ tu =Es[u(t);R2],z(t)=Cw[ )(~ tz ;S1],y(t) =Cw[ )(~ ty ;S2]; 

u(t)=Cs[ )(~ tu ;Q2], )(~ tz =Ew[z(t);T1], )(~ ty =Ew[y(t);T2]; 

)(~ tu =Es[u(t);R2], )(~ tz =Ew[z(t);T1], )(~ ty =Ew[y(t);T2], 
 (5) 

where Qi, R2, Si, Ti, i = 1,2, are full rank matrices. 
 
Theorem 2. The system S is an aggregation of S

~
 if 

there exists a group of full rank matrix U, Qi, R2, Si, 
Ti, i = 1,2, such that 
 

U A
~

=AU; B1RwB1
T=U T

wBRB 1~1

~~ UT        (6) 

 
and anyone of the following aggregation-type 
conditions holds: 
 
   (a) U

2

~
B =B2 Q2, S1 1

~
C =C1U, S2 2

~
C =C2U;  

   (b) U
2

~
B R2=B2, S1 1

~
C =C1U, S2 2

~
C =C2U; 

   (c) U
2

~
B =B2 Q2, 1

~
C =T1C1U, 

2

~
C =T2C2U; 

   (d) U
2

~
B R2=B2, 1

~
C =T1C1U, 

2

~
C =T2C2U.   (7) 



  

 
For proofs of the above theorems see (Stankovic et 
al., 1996 and 1999). It is noted that the described 
inclusion principle is only the transfiguration in the 
framework of standard H �  state spaces for the 
existing one. The inclusion principle has first been 
introduced into the systems by (Ikeda and Siljak, 
1980; Ikeda et al., 1984). The stochastic forms of 
inclusion have been discussed by (Hodzic and Siljak, 
1983), and then by (Chen and Stankovic, 1996; 
Stankovic et al., 1996 and 1999). The inclusion has 
been generalized from the state to the input and the 
output by (Ikeda and Siljak, 1986; Iftar, 1993a; Siljak, 
1991; Chen and Stankovic, 1996; Stankovic et al, 
1996 and 1999). 
 
Let us associate with the systems S and S

~
a pair of 

output feedback controllers described by 
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where, xc(t)∈Rr with xc(t0)=xc0 and r

c Rtx
~

)(~ ∈  with 

00
~)(~

cc xtx = , denote the state vectors of controllers C 

and C
~ , driven by the output vectors y(t)∈Rl and 

lRty
~

)(~ ∈ of the systems, respectively. The matrices 

Ac, Bc, Cc, Dc, cA
~ ,

cB
~ ,

cC
~ and 

cD
~  are constant with 

proper dimensions. Although the assumption of r
�

r~  
justified since S is a part of S

~
, and thus should not 

require a large dimensional controller (Ikeda and 
Siljak, 1986; Iftar, 1993b), we leave r= r~ and only 
consider the contraction of inputs and outputs 
because there is no overlapping part of the controller 
corresponding to that of the system. 
 
Theorem 3. The controller C

~
is contractible to 

controller C, if the system S
~

includes the system S 
and for a group of full rank matrices Qi, R2, Si, Ti, i = 
2, satisfying 

cc AA
~=  anyone of the following 

conditions holds: 
 
    (a) BcS2= cB

~ , Cc= Q2 cC
~ , DcS2 = Q2 cD

~ ;  

    (b) BcS2= cB
~ , R2Cc= cC

~ , R2DcS2= cD
~ ; 

    (c) Bc = cB
~ T2, Cc= Q2 cC

~ , Dc = Q2 cD
~ T2; 

(d) Bc = cB
~ T2, R2Cc= cC

~ , R2Dc= cD
~ T2.     (9) 

 
 

3. MODEL OF THE SYSTEM 
 
Consider a multi-area overlapping interconnected 
power system (Siljak, 1978), described by the 
equations: 
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i=1,2,…,n.  (10) 
 
Where, vector xi is the deviation of the states of i-th 
area (subsystem) consisting of the components: aT, 
the valve opening variation of the steam turbine; Pt1, 
Pt2 and Pt3, the high, intermediate and low pressure 
output variations of steam turbine, respectively; aH, 
the gate opening variation of hydro turbine; vH, 
dashpot position variation; q, water flow variation of 
the hydroturbine; f, frequency variation. vi is the 
deviation of the variable achieving integral control; 
Pei represents the deviation of the tie-line power 
exchange variations between areas; ui is the deviation 
of the scalar area control input and � i is immeasurable 
variation of the area load; yi = [PT, PH, f] i

T defined as 
the deviation of the local output, where PT is the 
output of variation of the steam turbine and PH is the 
output variation of the hydro unit; � i represents the 
measurement noise vector corresponding to yi 
(Calovic, 1984). The system Si can be decomposed in 
tow-by-two overlapping interconnected power 
subsystems described as 
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 i, j=1,2,…,n, i � j  (11) 
 
Where, TTT ] , , , ,[ jjeiii xvPvxx = denotes the state 

variation vector (note that Pei = Pej); T],[ ji  uuu =  

input vector, T],[ ji  ξξξ =  input disturbance vector, 
TTT ] , , , ,[ jvjeivii ηηηηηη =  measurement noise vector; 

the matrices in (11) are 
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 i, j=1,2,…,n, i � j.  (12) 
 
It appears that two-by-two subsystems possess 
overlapping parts showed by doted line in (12). Now, 
we consider the standard H	  state space description 



  

of the system Sij as follows: 
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  i, j =1,2,…,n, i
�

j   (13) 
 
where, T

2
T

221
T
11 ] , ,,  , , ,[ ξηηηηηξ yvPevyw =  denotes 

input disturbance vector, the combined vector of 
input disturbances and output measurement noises; 

T
21 ] ,[ zzz =  the controlled output vector, leaving the 

physical meaning of x, u and y as fixed above. 
Matrices in (13), which correspond to (11) and (12), 
are changed to 
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Therefore, we rewrite (13) as  
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 i, j=1,2,…,n, i � j  (15) 
 
For detailed amount of parameters in the expression 
(15) see (Calovic, 1984; Sil jak, 1978). The choice of 
matrix C1 for controlled output vector z allows the 
better performance of the designed H �  decentralized 
output feedback controllers. Other models of 
two-by-two area subsystems can be set as (15). 
 
 

4. OVERLAPPING DECOMPOSITION AND H �  
CONTROLLER DESIGN 

 
For the H�  decentralized output feedback control of 
the multi-area overlapping interconnected power 
system, the model (10) can first be decomposed as 
two-by-two area subsystems (11) which can be 
written in the standard H�  form as (15). Then, the 
problem of the overlapping structures in the 
two-by-two area subsystems is solved, that is, the 
deviation of the tie-line power exchange variation of 
subsystems Pei is decoupled for each subsystem in 
the expended space. By imposing restriction and 
aggregation conditions presented in section 2, one 
can properly choose a group of expanding matrices, 
except that Q2 = R2 = I2, S1=T1 = I2 (since there is no 

overlapping part in the input T],[ ji  uuu = and in the 

controlled output T
21 ] ,[ zzz = ), such as: 
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(where 
�

 is a scalar satisfying 0<
�

<1), and 
appropriate complementary matrices corresponding 
to the matrices in (15), which satisfy the following 
relations: 
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The pair of expanded subsystems with the 
decomposed overlapping structure is obtained 
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i, j=1,2,…,n, i 	 j  (18) 

 
where, the matrices in (18) are partitioned with the 
block-diagonal parts denoted as the matrices in both 
of decoupled subsystems. The overlapping vectors 
are also partitioned appropriately. 
 
In this way, the decentralized subsystems are shown 
in the expanded space 
 







  :S
~

s

sssss

ssss

sssssss

wDxCy

uxCz

uBwBxAx

212

1

21

~~~~

~~~

~~~~~

+=

+=

++=



  

s = i, j.  (19) 

 
The H �  decentralized dynamic output feedback 
controller is applied to each subsystem 

sS
~  having 

the structures 
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   s = i, j.     (20) 

 
The existence condition for this kind of H �  controller 
can be establi shed using the LMI approach of 
(Iwasaki and Skelton, 1994): 
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If there exist symmetric positi ve matrix P and a 
matrix Gi, such that expression (21) is satisfied, then 
Gi would be a candidate of parameter matrices for the 
H �  dynamic output feedback controller (20). The 
resulting parameter matrices for Gi are composed as a 
H �  decentrali zed dynamic output feedback controller  
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for the system 

ijS
~  in the expanded space, where the 

parameter matrices are described as 
 

)ˆ,ˆ(ˆ
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ji BBdiagB =  

)ˆ,ˆ(ˆ
ji CCdiagC = , )ˆ,ˆ(ˆ

ji DDdiagD =    (24) 

 
Contracting the decentralized controllers described 
by (23) and (24) in 

ijS
~ using conditions of Theorem 

3, one can get a H �  decentralized dynamic output 
feedback controller in the original space 

ijS described as 

 





:ijC
yDxCu

yBxAx

cc

cc

ˆˆˆ

ˆˆˆˆ

+=
+=

�
 

i, j=1,2,…,n, i � j  (25) 
 
where, 
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ˆˆ TDDc = . (26) 

 
The controller for 

ijS
~  can be contracted to and 

implemented in the original system Sij. If the 
controller 

ijC
~  stabil izes the system 

ijS
~  in the 

expanded space, then the controller Cij stabil izes the 
system Sij in the original space. After contraction, the 
closed-loop system model of Sij is rewritten as 
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Using representation (27), a simulation of the 

two-by-two area system is described in the next 
section. When i, j = 1, 2, …, n, i � j, one can get a set 
of decentralized sub-optimal robust H �  controllers of 
each two-by-two area subsystems. Comparing with 
the results of decentralized overlapping suboptimal 
LQG control for the system AGC, obtained in (Chen 
and Stankovic, 1996; Stankovic et al, 1996 and 1999), 
the proposed H �  decentralized output feedback for 
AGC has a desired robustness features, while the 
response curves of the system to the load disturbance 
are of the same qualit y as the ones of the LQG 
approach. 
 
 

5. RESULTS OF SIMULATION 
 
For the two-by-two area system, assume i = 1, j = 2, 
and the parameters of the system matrices as in (12), 
(14), (Calovic, 1984; Chen and Stankovic, 1996; 
Stankovic et al, 1996 and 1999). Let expanding 
transform matrices be as in (16), H�  optimal 
performance index 	  =15. We obtained the 
decentralized H �  controller in the expanded space 

12S
~  as in (25), which can be contracted to and 
implemented in the original system S12. The 9-th 
dimensional output response curves including 
deviation of frequency variations f1, 2 and the tie-line 
power exchange variation Pe1, to the load disturbance 
are showed in Fig. 1. The controllers have important 
robustness characteristics, which are present in the 
H �  design, while performance curves are of the same 
quality as those obtained using LQG controllers 
(Calovic, 1984; Chen and Stankovic, 1996; 
Stankovic et al, 1996 and 1999). 
 
 

6. CONCLUSIONS 
 
A new overlapping decentralized AGC scheme is 
proposed using the Inclusion Principle and the H�  
methodology. After the system is expanded into a 
larger space, where subsystems appear as disjoint, H�  

controllers are designed for each individual power 
area using only local output feedback. Then, the 
system and the decentralized controllers are 
contracted to the initial smaller space for 
implementation of the controllers in the original 
system. Simulations of the typical interconnected 
power systems show that the quality of performance 
of the closed-loop systems in the new scheme is the 
same as that of the standard decentralized LQG 
control approach, while the closed-loop system 
obtains the additional robustness characteristics of 
controllers designed by the H �  methodology. 
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Fig. 1. 9-th dimensional output response curves to 
step disturbances 


