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Abstract: This paper presents an approximate input-output linearization approach for
nonminimum phase nonlinear systems with linear unforced dynamics. A special Byrnes
Isidori normal form is introduced, where the internal dynamics are not affected by the
inputs up to second order such that the corresponding transformation can be obtained by
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achieved by state feedback in explicit form. Copyright © 2002 IFAC
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1. INTRODUCTION AND PROBLEM
FORMULATION

In what follows the system under consideration will
be a nonminimum phase nonlinear SISO system of
nth order with state equations
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having linear unforced dynamics (i.e. the dynamics
of the system (1) for 0≡u  are linear) and equilibri-
um (x0, u0) = (0,0). Since bilinear systems are a spe-
cial case of (1), one can use any approach for bilinea-
rization of general systems in order to obtain a nonli-
near system with linear unforced dynamics (see e.g.
Svoronos et al., 1980). In the sequel it is supposed
that the continuously differentiable nonlinear vector
function b(x) is defined for all x in a neighborhood of
x0 = 0. Now consider for b(x) the expansion
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where b = b(0) ≠ 0 and b1(0) = 0. Using (2) the sy-
stem equations (1) read
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In the following it is assumed that the nonlinear sy-
stem (1) has relative degree r, 1 ≤ r ≤ n, at x0 = 0
(Isidori, 1995), that is the relations
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for all x in a neighborhood of x0 and
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hold in light of (2), where in the case r = 1 only (5)
has to be evaluated. Since b1(0) = 0 always holds (see
(2)) (4) and (5) imply b = b(0) ≠ 0 if r ≤ n.
It is shown in (Isidori, 1995), that there always exists
a local transformation
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into the normal form
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where q(ξ,η) denotes an (n-r,1) vector of possibly
nonlinear functions of the real variables z1, ... , zn and
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The (r,r) matrix J is a matrix with zero elements
except for ones on the first upper secondary diagonal
and the (r,1) vector er denotes the rth unit vector. The
normal form (7) is referred to as input normalized
Byrnes Isidori normal form, since q(ξ,η) does not
depend on the input u. Now consider the state feed-
back (which exists and is well defined for all z in a
neighborhood of z0 = t(x0) = 0; see (5))
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in which u  is a new input for the system (7) yielding
the closed loop
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with a linear ξ-subsystem of dimension r (a chain of
r integrators), which is responsible for the input-
output behaviour, and a possibly nonlinear η-
subsystem of dimension n-r not affecting the output
y. The unforced dynamics of the nonlinear η-
subsystem, i.e.
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are called (undriven) zero dynamics of the nonlinear
system (3). A linear stable reference transfer beha-
viour can be achieved by stabilizing the linear ξ-
subsystem by means of state feedback for ξ that de-
couples the nonlinear η-subsystem from the input-
output behaviour. Hence stability of the closed loop
only depends on the behaviour of the zero dynamics
(11). The nonlinear system is called (locally) mini-
mum phase at (ξ,η) = (0,0) if the zero dynamics are
locally asymptotically stable at η = 0 and (locally)
nonminimum phase at (ξ,η) = (0,0) if the zero dyna-
mics are locally unstable at η = 0. Thus exact input-
output linearization with internal stability is always
possible in the case of minimum phase systems.
For nonminimum phase nonlinear systems an exact
input-output linearization with internal stability is not
feasible in most cases. A standard approach to the
problem of approximate input-output linearization is
to introduce new inputs, with respect to which the
system has minimum phase characteristics (for an
overview see Allgöwer and Doyle, 1998). The pro-
blem of this method is that the desired level of linea-
rity achieved with respect to the true outputs cannot
be readily taken into acount in the design procedure.
In this contribution the approximate input-output
linearization approach of Allgöwer (1997) is adopted
that computes the approximately linearizing state
feedback after a factorization of the zero dynamics
into a stable and into an antistable part, where the
latter is approximately linearized and decoupled from
the stable part. The corresponding controller stabili-
zes the unstable zero dynamics and increases the
level of linearity with respect to the input-output
behaviour of the resulting closed loop. For the latter
requirement a quadratic linearizing static state feed-
back is considered in this paper, that is the Taylor
series expansion of the state equations related to the
input-output behaviour of the compensated system

does not contain nonlinear terms up to order two. In
the approach of Allgöwer (1997) it is assumed that
the system is represented in input normalized Byrnes
Isidori normal form (7) that amounts to solve a set of
partial differential equations in order to obtain the
functions ηi(x), i = 1(1)n-r, in (6) (for details see
Isidori, 1995), which in general is not an easy task to
perform. In this contribution the solution of partial
differential equations is circumvented by introducing
the normal form
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where O[k+](ξ, η, u) denotes an expression containing
arbitrary terms in ξ, η and u of order strictly larger
than k. It is shown in the sequel, that the functions
ηi(x) in (12), needed in the stabilizing state feedback,
can be simply computed by solving linear algebraic
equations. The normal form (12) will be referred to
as quadratic input normalized Byrnes Isidori normal
form, since u does not affect the differential equation
for η up to quadratic terms.
The next section introduces the quadratic input nor-
malized Byrnes Isidori normal form and shows how
the approach of Allgöwer (1997) can be applied to a
system represented in this form. Section 3 demon-
strates the proposed design procedure by means of a
simple example.

2. APPROXIMATE INPUT-OUTPUT
LINEARIZATION APPROACH

If the following it is assumed that the linear approxi-
mation (A,b,cT) of the nonlinear system (3) has na ≥ 1
zeros in the open right half plane and no zeros on the
imaginary axis giving a locally nonminimum phase
nonlinear system, i.e. its zero dynamics are locally
unstable. Then exact input-output linearization with
internal stability is no longer feasible, when using the
input-output linearizing state feedback (9). In order
to achieve at least an approximately linear input-
output behaviour of the controlled system, one can
use the approximate input-output linearizing state
feedback assuring internal stability developed in this
section. The approach proposed consists of the fol-
lowing steps:
(1) Transformation of the system into quadratic input

normalized Byrnes Isidori normal form (12) and
compensation of the nonlinearities in the direct
input-output channel giving a linear ξ-subsystem.

(2) Linear transformation of the system resulting
from step (1) such that the η-subsystem is factori-
zed into an antistable ηa-subsystem and into a
stable ηs-subsystem in the first approximation.

(3) Using state feedback that decouples the locally
stable ηs-subsystem from the input-output beha-
viour, quadratic linearizes the ηa-subsystem and
stabilizes the input-output behaviour comprised
of the linear ξ-subsystem and the ηa-subsystem.



2.1 Transformation into quadratic input normalized
Byrnes Isidori normal form

The next lemma introduces the nonlinear change of
coordinates which transforms the system (3) into
quadratic input normalized Byrnes Isidori normal
form (12). In the sequel some results from Kronecker
calculus are used, which are collected in the appen-
dix.

Lemma 1 Consider the nth order nonlinear system
(3) with relative degree r at x0 = 0 and the nonlinear
transformation
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where Tξ  is given by (6) and the (n-r,n) matrix Tη is
a solution of
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with rnT −=η )rank(  and the (n,n) matrix H is given

by
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with H1 chosen such that 0]det[ 1 ≠bH . The (n-

r,n2) matrix G in (13) is obtained from
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where the (1,n) vectors T
irq + , i = 1(1)n-r, are resul-

ting from
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with the (n,n) Jacobian matrix N
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The nonlinear transformation (13) has a Jacobian
matrix which is nonsingular at x0 and therefore qua-
lifies as a local coordinates transformation in a
neighborhood of x0. The inverse transformation in a
neighborhood of x0 reads
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Proof. In order to show that the Jacobian matrix T1 of
the nonlinear transformation (13) is nonsingular, it is
proved that the rows of T1 are linearly independent.
To this end it is verified that the expression

TT
rnn

T
r

rT
r

rT
r

T

tktk

AckAckck

0,1,1

12
11

=+++

+++

−ηη+

−−
−




 (20)

is only satisfied for scalars k1 = ... = kn = 0. Postmul-
tiplying (20) with b gives
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Since the system (3) has relative degree r at x0 = 0
one has
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implied by (4) such that kr = 0 in view of (5) and
(14). Thus (20) becomes
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By postmultiplying (23) with Ab one obtains
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and hence kr-1 = 0 in light of (5), (14) and (22).
Proceeding with this approach (i.e. successively
postmultiplying with A2b up to Ar-1b) it is
straightforward to verify, that k1 = ... = kr = 0 holds.
Then kr+1 = ... = kn = 0 follows from the assumption
that Tη has full row rank (see Lemma 1). The inverse
transformation of (13) can be represented as
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in a neighborhood of z0 = x0 = 0. By introducing (25)
in (13) and using (A4) and (A5) one obtains
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By applying the quadratic transformation (13) to
system (3) and using a state feedback law, that can-
cels all nonlinearities in the direct input-output chan-
nel one arrives at a system represented in quadratic
input normalized Byrnes Isidori normal form with
linear ξ-subsystem as given in the following theorem.

Theorem 1 Consider the nonlinear system (3) with
relative degree r at x0 = 0. Then the local change of
coordinates (13) and the local state feedback
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both well defined in a neighborhood of x0 transform
the nonlinear system (3) into the quadratic input
normalized Byrnes Isidori normal form
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where
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Proof. Consider the system (3) and the transformati-
on (13) of Lemma 1
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The time derivatives of (31) and (32) become with
the first line of (7)
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where successively the relations (A3), (A10), A(7),
A(12) and
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for i = 1(1)n-r were used. Along with
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and the expansion
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around x0 = 0 with b = b(0) and N = ∂b(x0)/∂xT (34)
obtains the form
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where
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follows from (A12). Using successively (36), (A7),
(A3) and A(10) the ith row of Qx in (40) can be writ-
ten as
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for i = (1)n-r, where successively (36), (15) and (17)
were used, (39) takes the form

),(]2[)2( uxOxQAxT x
+

η ++=η� (45)

As the system (3) has relative degree r at x0 = 0 the
state feedback law (27) is well defined (see (5)) and
can be applied to (33) and (45) giving
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By substituting the inverse transformation (19) in
(46) one finally obtains (28). �

2.2 Linear transformation of the η-subsystem

Suppose the Jacobi linearization of the zero dynamics
of the system (3) has no eigenvalues with zero real
part. Then the η-subsystem of system (28) can be
factorized into an antistable ηa-subsystem and into a
stable ηs-subsystem in the first approximation by
means of the linear transformation
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where the nonsingular (n-r,n-r) matrix Tl satisfies
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such that Reλ(Ma) > 0 and Reλ(Ms) < 0 with λ(⋅)
denoting the spectrum of a matrix. Since the trans-
formation (47) leaves the system states ξ unchanged,
the transformation of the matrix P (see (29)) reads
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and by using (A4) it is straightforward to show that
the coefficient matrix of the quadratic term takes the
form

),,,(diag 1111 −−−− ⊗⊗⊗=







llrllrrzl

s

a TTITTIIQT
Q

Q (50)

The resulting system has the special quadratic input
normalized Byrnes Isidori normal form with state
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A Jacobi linearization of (51) directly shows that the
ηa-subsystem of order na is locally antistable (i.e. its
first approximation has all its eigenvalues in the open
right half plane) and the ηs-subsystem of order n-r-na

is locally asymptotically stable.



2.3 Quadratic input-output linearizing state feedback

Finally the quadratic input-output linearizing state
feedback law assuring internal stability can be ob-
tained from the following theorem.

Theorem 2 Consider the nth order system (3) with
relative degree r at x0 = 0 represented in the qua-
dratic input normalized Byrnes Isidori normal form
(51). The input-output behaviour of the system (3)
can be linearized up to second order using a static
state feedback if
(i) the Jacobi linearization of the system (3) is con-

trollable,

(ii) there exists an (na,1) vector ),(]2[ η′ξΦ  of homo-

geneous polynomials of second degree in
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The quadratic linearizing state feedback law for the
system (3) is given by
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The (r+na)th order input-output behaviour of the
system (3) with feedback (53) is represented by
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System (3) with feedback (53) is internally stable if
and only if
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Furthermore the feedback vectors Tkξ  and T

a
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always be chosen such that (56) holds.

Proof. Consider the transformation
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If there exists a solution ),(]2[ η′ξΦ  of (52) system
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in the new coordinates ][ T
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Applying the feedback
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where the stable ηs-subsystem is decoupled from the
input-output behaviour (55) up to second order. In
view of the Jacobian matrix of (61) it follows from
the Principle of Stability in the First Approximation
that the compensated system is internally stable if

(56) holds, since 0)(Re <λ sM  by assumption.

Transformation (13) and nonsingular feedback (27)
do not change the controllability of the Jacobi linea-
rization of the system. Therefore condition (i) di-
rectly implies controllability of the Jacobian linea-
rization of (59), such that there exist feedback vectors

Tkξ  and T

a
kη′  which assign an arbitrary set of eigen-

values to the system (55) in the first approximation. 

Remark In order to find the monomial coefficients

of the vector ),(]2[ η′ξΦ  satisfying (52) one must

solve a set of linear algebraic equations. In general
the number of equations is greater than the number of
unknowns, such that a solution may not exist. Howe-
ver, in this case one can seek an approximate solution
of (52) in some least square sense (for more details
see [Ka1]).

3. EXAMPLE

Consider the nonminimum phase bilinear system
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Chosing ]01[=η
Tt  satisfying (14) and H = I (see

(15)) the matrix G in (16) can be computed from (17)
giving the transformation (13)
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By applying the transformation (63) and the feedback
law (27) to (62) one obtains the quadratic input nor-
malized Byrnes Isidori normal form

ξ=
ηξ+η+ηξ+ξ+η=η
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(64)

given by (28). In order to achive a quadratic linea-
rization in (64) solve (52) for Φ[2](η) = 0.5qη2

. This
yields the solution q = –9 giving the new system state

2
2
9]2[ )( η−η=ηΦ+η=η′ (65)

such that the state space representation

ξ=
η′ξ+ξ+η′=η′
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y
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u
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#

(66)

has a quadratic linear η'-subsystem (see (59)). Thus
the state feedback achieving an approximately linear
input-output behaviour follows from (53) as

( )
( )lwkxckxx

lwkkxxu
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xx

xx
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1
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where
2
2211 26 xxxx −−=η (68)

in view of cTb = 1 and (63).

4. CONCLUSIONS

A method for approximate input-output linearization
of nonminimum phase systems with linear unforced
dynamics was considered in this paper. The proposed
approach is based on the transformation of the sy-
stem to be controlled into quadratic input normalized
Byrnes Isidori normal form first, where the corre-
sponding transformation is obtained by solving a set
of linear algebraic equations. The η-subsystem of the
normal form is factorized into a stable and into an
antistable part in the first approximation, where the
latter part is quadratic linearized and the stable part is
decoupled from the input-output behaviour giving a
quadratic linear reference transfer behaviour. The
corresponding feedback law was obtained in explicit
form. A simple example demonstrated the design
procedure.
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APPENDIX

Consider the (m,n) matrix A = [aij] and the (p,q) ma-
trix B, then the Kronecker product of A and B is
defined as the (mp,nq) matrix
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A special case of (A1) is the second degree (n2,1)
vector monomial x(2) related to the n dimensional

state vector ][ 1 n
T xxx &=

[ ]TT
n

T xxxxxxx '1
)2( =⊗= (A2)

Basic properties of the Kronecker product are
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Let X = [xij] be an (n,p) matrix and let vec(X) denote
the vector formed by stacking the columns of X into
one (np,1) vector according to

[ ]TTT
p

TT XeXeX (1)(vec = (A6)

then for any matrices A, B and X one has

)vec()()(vec
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Some properties of the vec-function are
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where the trace of an (n,n) matrix M = [mij] is de-
fined as

∑
=

=
n

i
iimM

1

)trace( (A11)

A compact representation of quadratic forms in terms
of the vector monomial x(2) is given by

)2())(vec(
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where (A2), (A9) and (A10) were used.


