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Abstract: An aircraft exposed to illumination by a tracking radar is considered and the
problem of determining an optimal planar trajectory connecting two prespecified points
is addressed. An analytic solution yielding the trajectory that minimizes the radar energy
reflected from the target is derived using the Calculus of Variations. The solution is shown
to exist only if the angle θ f , formed by the lines connecting the radar to the two prespecified
trajectory end points, is less than 60o. In addition, expressions are given for the path length
and optimal cost.
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1. INTRODUCTION

Given a radar located at the origin O of the Euclidean plane, it
is desired to find the optimal aircraft trajectory that connects
two prespecified points A and B in the plane such that the
Radio Frequency (RF) energy reflected from the aircraft
is minimized; see, e.g., Fig. 1. According to the “Radar
Transmission Equation" in Skolnik (1990), the ratio of the
received RF power to the transmitted RF power reflected
from the target is inversely proportional to R4, where R is
the slant range from the target to the monostatic radar. The
cost to be minimized is then� l

v

0

1
R4 � t � dt
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where v is the (constant) speed of the aircraft and l is the
path length. Now, consider the trajectory in Fig. 1 to be
given in polar form, as R � R � θ � . Furthermore, v � ds

dt i.e.,
dt � ds

v , and ds, the element of arc length, is given in polar
coordinates by

ds ��� � dR
dθ � 2 �

R2 dθ

Substituting into the cost equation we then obtain the func-
tional

J 	 R � θ ��
�� � θ f

0 
 Ṙ2
�

R2

R4 dθ (1)

The boundary conditions are

R � 0 ��� Ro (2)

R � θ f ��� Rf � 0 � θ � θ f � (3)
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Fig. 1. Optimal Trajectory

2. OPTIMAL PATH

Without loss of generality, assume R f � Ro and 0 � θ f � π ,
see, e.g., Fig. 1. Polar coordinates are used. We have the
following:
Theorem 1. The optimal trajectory which connects points
A and B at a distance Ro and R f from the radar located at
the origin O, where θ f is the angle � AOB, and minimizes the
exposure to the radar according to Eqs. (1)-(3), is

R � � θ ��� Ro
3� sin � 3θ

�
φ �

sinφ � 0 � θ � θ f (4)

where

φ � Arctan ��� sin3θ f�
R f
Ro � 3  

cos3θ f

!#"$ (5)

Moreover, the length of the optimal path is given by the
integral

l �%� Ro
3
&

sinφ

� θ f

0
	 sin � 3θ

�
φ ��
(' 2

3 dθ

and the cost function explicitly evaluates to

J � � 1

3Ro
3

sin3θ f

sin � 3θ f

�
φ �

This result holds provided 0 � θ f � π
3 . However, if π

3 � θ f �
π , then an optimal path does not exist and a constraint on the
path length, l, must be included to render the optimization
problem well posed.

Proof. We have obtained a variational problem with an inte-
grand which is not explicitly dependent on the independent
variable θ . In this case, the Euler equation of the Calculus
of Variations - see, e.g., Gelfand and Fomin (1963) - can be
reduced to a first order differential equation

1
R2 � C 
 Ṙ2

�
R2 (6)

where C is a constant. Thus,

Ṙ �*) 
 1 + C2
 

R6

R2

where 1
C2 , R6 , 0. Hence, we have obtained the non-linear

ordinary differential equation

dR
dθ

�*) 
 1 + C2
 

R6

R2 � R � 0 ��� Ro -�.OA . �
The integration constant C will be determined by the termi-
nal condition,

R � θ f ��� R f -/.OB . �
Obviously, R � θ � is unimodal on 0 � θ � θ f . Hence, 0 θ̄ 1� 0 � θ f 
 such that R � θ � is monotonically increasing (decreas-

ing) on � 0 � θ̄ 
 , and is monotonically decreasing (increasing)
on 	 θ̄ � θ f 
 . At θ � θ̄ , R � θ � is maximal and dR

dθ 22 θ̄ � 0. Let

R � θ � be monotonically increasing on 0 � θ � θ̄ and let R � θ �
be monotonically decreasing on θ̄ � θ � θ f .

Consider 0 � θ � θ̄ where R � θ � is monotonically increasing,
and

dR
dθ

� 
 1 + C2
 

R6

R2

Thus,

dθ � R2
 1 + C2
 

R6
dR

The solution of this ODE entails an integration. To this end,
define the new variable

u � CR3 � i.e., du � 3CR2 dR

Hence,

dθ � 1
3

du&
1
 

u2

Integration yields u � sin � 3θ
�

φ � , where φ is the integration
constant. Hence,

R3 � θ �3� 1
C

sin � 3θ
�

φ �
Therefore on 0 � θ � θ̄ ,

R � θ �3� 1
3
&

C
3
 sin � 3θ

�
φ � � 0 � φ (7)

Similarly, on θ̄ � θ � θ f ,

R � θ ���  1
3
&

C
3
 sin � 3θ

 
ψ � � 0 � ψ (8)

where C , 0.

We have three unknowns: φ � ψ � and θ̄ , and three conditions:
R � 0 ��� Ro, R � θ f �4� R f and R � θ̄ �3� max

0 5 θ 6 θ f

R � θ � . The latter

yields:

3θ̄
�

φ � π
2

(9)

and
3θ̄

 
ψ �  π

2
see, e.g., Eqs. (7) and (8).



Thus, combining Eqs. (9) and (2) yields

φ
�

ψ � π

i.e.,
ψ � π

 
φ (10)

Hence, for θ̄ � θ � θ f , inserting Eq. (10) into (8) yields

R � θ ���  1
3
&

C
3
 sin � 3θ

�
φ
 

π �� 1
3
&

C
3
 sin � 3θ

�
φ �

Therefore, the formula

R � � θ ��� 1
3
&

C
3
 sin � 3θ

�
φ �

applies on the complete domain of definition of R � θ � , viz., it
applies for 0 � θ � θ f .

Finally, we use the boundary conditions R � � 0 �7� Ro and
R � � θ f ��� R f to determine C and φ , respectively, viz.,

Ro � R � � 0 ��� 1
3
&

C
3
 sinφ

Solving for C yields

C � sinφ
Ro

3 (11)

Thus, the extremizing trajectory is explicitly given by

R � � θ ��� Ro
3� sin � 3θ

�
φ �

sinφ

In addition,

R f
3 � R � � θ f � 3 � Ro

3 8 sin � 3θ f

�
φ �

sinφ 9
which yields

φ � Arctan ��� sin3θ f�
R f
Ro � 3  

cos3θ f

! "$
It can be shown that the extremal given in Eq. (4) satisfies
the necessary and sufficient conditions for a weak local
minimum - see, e.g., Hebert (2001).

Once the optimal path R � � θ � has been explicitly determined,
it is possible to calculate the path length of the trajectory. The
path length is given by

l � � θ f

0 : Ṙ2 � θ � � R2 � θ � dθ (12)

Substituting (6) into (12) yields

l � � � θ f

0

1
CR2 � θ � dθ (13)

Using Eqs. (4) and (11) yields the optimal path length

l � � � θ f

0

Ro
3

sinφ
8 Ro

3� sin � 3θ
�

φ �
sinφ 9 ' 2

dθ� Ro
3
&

sinφ

� θ f

0
	 sin � 3θ

�
φ �;
<' 2

3 dθ (14)

It can be shown that the path length integral (14) evaluates
into an expression consisting of elliptic integrals of the first
kind.

The cost function Eq. (1) can be simplified by substituting
Eq. (6) to obtain

J � 1
C

� θ f

0

1
R6 dθ

Substituting for the previously determined integration con-
stant (11), and optimal trajectory (4), yields

J � � sinφ
Ro

3

� θ f

0

1

sin2 � 3θ
�

φ � dθ� sinφ
3Ro

3

� 3θ f = φ

φ

1

sin2 � x � dθ� sinφ
3Ro

3 > cotφ
 

cot � 3θ f

�
φ ��?� 1

3Ro
3

sin3θ f

sin � 3θ f

�
φ � (15)

Several interesting special cases concerning the trajectory
given by Eq. (4) are now considered.

In the case where the the origin O and points A and B are
colinear, viz., θ f � 0 and R f , Ro, the optimal trajectory is
a straight line, as shown in Fig. 2.
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x

Fig. 2. Optimal Trajectory for the Special Case where θ f � 0

Also, the following holds for the symmetric case where
Ro � R f .
Corollary 1. The optimal trajectory which connects points
A and B at a distance Ro � R f from the radar located at the
origin O, minimizing the exposure to the radar according to
Eqs. (1)-(3), is

R � � θ �3� Ro
3 @AAB cos � 3θ

 3θ f
2 �

cos
3θ f

2

� 0 � θ � θ f

where θ f is the angle � AOB. The length of the optimal
trajectory is then given by



l � � Ro

3: cos
3θ f

2

� θ f

0 C cos � 3θ
 3θ f

2 �7D ' 2
3

dθ (16)

which is an elliptic integral of the first kind. The cost function
evaluates to

J � � 2

3Ro
3 sin � 3θ f

2 � (17)

This result holds provided 0 � θ f � π
3 .

Proof. When R f � Ro we can write Eq. (5) as

φ � Arctan 8 sin3θ f

1
 

cos3θ f 9� Arctan �� 2sin
3θ f

2 cos
3θ f

2

1
 � 1  2sin2 3θ f

2 � !$� Arctan �� cos
3θ f

2

sin
3θ f

2

!$
� Arctan � cot

3θ f

2 �� Arctan � tan C π2  3θ f

2 DE�� π
2

 3θ f

2
(18)

The optimal trajectory R � � θ � is then obtained by substituting
(18) into (4), whereupon we obtain

R � � θ ��� Ro
3 @AAB sin � 3θ

�
π
2

 3θ f
2 �

sin � π
2

 3θ f
2 �� Ro

3 @AAB cos � 3θ
 3θ f

2 �
cos

3θ f
2

Similarly, by substituting Eqs. (11) and (18) into the equation
for the path length (13) we obtain

l � � Ro
3

sin
�

π
2

 3θ f
2 � � θ f

0

1
R2 dθ� Ro

3

cos
3θ f

2

� θ f

0

1
R2 dθ

Substituting the equation for the extremal R � � θ � developed
for this special case, we obtain

l � � Ro
3

cos
3θ f

2

� θ f

0

1

Ro
2 FG 3 @AAB cos

3θ f
2

cos � 3θ
 3θ f

2 �IHJ 2

dθ

� Ro

3: cos
3θ f

2

� θ f

0 C cos � 3θ
 3θ f

2 �KD ' 2
3

dθ

Finally, the cost for the optimal trajectory, J � , is calculated
by inserting Eq. (18) into Eq. (15), to obtain

J � � 1

3Ro
3

sin3θ f

sin � 3θ f

�
π
2

 3θ f
2 �� 1

3Ro
3

sin3θ f

cos
3θ f

2� 2

3Ro
3 sin � 3θ f

2 � (19)

In the symmetric special case where R f � Ro, the relation-
ship between φ and θ f is linear and is given by Eq. (18). The
angle φ is evaluated for some interesting θ f in Table 1. We
note that the angle φ L 0 as θ f L π

3 . The extremal trajectory

Table 1. Interesting Values of φ for the Special
Case R f � Ro � 1

θ f φ sinφ
0o M 90o 1

10o Arctan N 1
2 OQP 3 R 1

2 S 2 O P 3

15o Arctan N 1P 2 O 1 R 1
2 T 1 O 1U

2

20o 60o P 3
2

30o 45o 1P 2

45o Arctan N 1P 2 M 1 R 1
2 T 1 M 1U

2

60o 0o 0

(4) is shown in Fig. 3 for the case where Ro � R f � 1 and
θ f � 45o.
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Fig. 3. Extremal R � � θ � for Ro � R f � 1, θ f � 45o

Remark 1. R � θ � - const, viz., the trajectory of a circular
arc, satisfies the Euler equation of the Calculus of Varia-
tions. Hence for R f � Ro, R � θ �V� Ro is a candidate solution.
However, the cost associated with this solution, Jc, is



Jc � � θ f

0 
 Ṙ2
�

R2

R4 dθ� � θ f

0

Ro

Ro
4 dθ� 1

Ro
3 θ f

Considering the optimal cost for the trajectory when R f � Ro

given by (19), we see that Jc , J � for all admissible Ro, R f ,
and θ f .

Proof.

θ f , sinθ f � for all θ f , 0W 3
2

θ f , sin
3
2

θ fW θ f , 2
3

sin
3
2

θ fW 1

Ro
3 θ f , 2

3Ro
3 sin

3
2

θ fW Jc , J �
Thus a circular arc trajectory is not optimal under the condi-
tion R f � Ro.

An additional argument can be made concerning the nature
of the function that minimizes the reflected RF energy along
the flight path: For example, one could argue that by min-
imizing the distance traveled between points A and B, one
would lower the amount of time exposed to the radar and
thus lower the cost function. Clearly, time of exposure is
not the only factor of concern, as proximity to the radar is
also a factor. Alternatively, it might be suggested that the
aircraft should travel as far away from the radar as quickly
as possible, to minimize the energy received at the radar. Of
course, the aircraft must eventually reach point B. Thus, the
shape of the extremal shown in Fig. 3 represents the trade-
off between minimizing the exposure time (path length) and
the RF power received by the radar over time.

The extremal arc no longer exists as the angle θ f L θC - π
3 ,

a critical angle. In other words, the path length becomes
infinite at this critical angular separation of the segments OA
and OB. Beyond this critical angle, there does not exist a
finite length path that minimizes our cost function. That is,
the aforementioned tradeoff breaks down and it is advanta-
geous for the aircraft to travel away from the radar to infinity.
Thus for θ f � π

3 , a path length constraint must be included
to render the optimization problem well posed.

3. CONCLUSION

The problem of determining the flight path connecting the
point of departure and the point of arrival, such that the
exposure of an aircraft to illumination by a tracking radar
located at the origin is minimized, has been solved using the

Calculus of Variations. A closed form solution was obtained.
The optimum was shown to exist iff the angle θ f included
between the radials from the radar to the points of departure
and arrival is less than 60o. The analytic solution obtained
provided valuable insight into the problem. Expressions for
the path length and optimal cost are determined. A solution
of a representative path planning problem is provided.
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