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Abstract: A distributed Wiener logic processor model structure is considered. Each
fuzzy Wiener model consists of a succession of a linear dynamic part and a static
steady-state (non-linear) logical part. The model structure and the necessary gradients
required by gradient-based parameter estimation methods are given. Parameter
projection and a modified threshold method are discussed. A simulation example
illustrates the approach in the identification of a nonlinear, non-minimum phase CSTR
process where a van der Vusse reaction takes place.
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1. INTRODUCTION

The DLP (Distributed Logic Processor) approach
in process identification has been considered by
several authors, see (Pedrycz et al., 1995), (Ikonen
et al., 2000), (Najim and Tkonen, 1999), and ref-
erences therein. The Takagi-Sugeno fuzzy model
can be seen as a special case of the DLP struc-
ture (Ikonen, 1996). The main difference to the
mainstream of fuzzy rule-based approaches is that
the parameter estimation concerns the rule-base
of the system, not the partitioning of the input—
output spaces. Instead, the emphasis is in find-
ing the logical relationships between the mod-
elling landmarks. Thus, the transparency of the
mapping, relying on the familiarity of the con-
cepts used in partitioning, is not lost during the
parameter estimation. Note, however, that there
are no particular technical constraints that would
restrict the use of data-driven methods with the
DLP approach also for the selection of an optimal
partitioning (see, e.g., (Pedrycz and Valente de
Oliveira, 1996)).

The identification of dynamic systems using DLP’s
is straightforward using the time-series approach
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(Pedrycz et al., 1995). However, the dimension
of the nonlinear mapping can become excessive,
prohibiting practical applications. In this paper,
we consider a succession of a linear dynamic part
and a static steady-state (non-linear) logical part.
In the DWLP (Distributed Wiener Logic Proces-
sors) approach proposed in this paper, the inputs
of each logic processor are filtered using a system
composed of I x I linear IIR filters where I is the
number of inputs to the process model. The out-
put of the structure is obtained as a combination
of the non-linear dynamic logical mappings, by
associating each mapping with an output single-
ton and computing a weighted average. Since the
filters precede the static logical parts, the system
is composed of a number of Wiener systems in
parallel.

In what follows, the DWLP structure will be con-
sidered in detail. Also the Hammerstein case is
briefly outlined. The application to process iden-
tification is discussed, and a numerical example
illustrates the performance of the approach in pro-
cess modelling, using noisy data from a simulated
van der Vusse CSTR (Chen et al.,, 1995). It is
concluded that the approach is appealing from the
point of view of both accuracy of the predictions,



and simplicity of the analysis of the behavior of
the nonlinear dynamic model obtained.

2. DISTRIBUTED WIENER LOGIC
PROCESSORS

Consider the following Wiener logic processor
(WLP) structure. For each WLP, the system
inputs z; € R, i = 1,2, ..., I, are associated with a
system of linear filters

xi(k—dj) (1)

where z; € R, j = 1,2,...,1, and Bj, (qfl) and
Aji (qfl) are polynomials in the backward shift
operator ¢~ such that lim, .; B, (2) /A;:(2) =
054, 05, = 1if ¢ = j, 0 otherwise, and d;; are
the time delays. Let B}, (qil) and A; ; (qil) be
given by:
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The membership y, € [0,1] in the b’th set parti-
tioning the space of one of the z;’s, b=1,2,.... B
, is obtained from

py (k) = Fp (2i (k) ») (5)
where partitioning is done using a single-variable
membership function of form F,, parameterized
with some associated parameters -,. The member-
ships M (k) = [py (k) , ptg () , ., s ()] are fod
to a logic processor (LP).

A logic processor consists of a layer of R AND-
nodes

&, (k) = T (M (k) S€2,) (6)

T
r— [wr,lawr,Qa "'7(")7",3] ;
R. T and S denote the

with parameter vectors €2
Wrp € [0,1}, r=12..

t-norm and the s-norm, respectively. The layer of
AND-nodes is followed by a single OR-node

7 (k) =S(E(F) TA) (7)

with inputs = (k) = [61 (k) & (k) EERES) ER (k)}Tv
¢, (k) € [0,1] and parameters A = [Ay, Ag, ..., Ag]”
A € [0,1], 7. € [0,1]. In order to enhance
the mapping capabilities, an additional monotone
non-linear element, such as a parameterized sig-
moid function, can follow the OR-node

~ 1
V(k) = 1+ e—02(m(k)—0o1)

(8)

where 7 (k) €

Notice, that the WLP can be separated into two
blocks 7 (k) = f5(f; (x(k))) where f; is a linear
dynamic function and f; is a static mapping. Thus,
it is a Wiener structure. An additional restriction
was posed by requiring that the steady-state gain
of the dynamic part is one, which results in that
the static part is a steady-state model of the
process.

A distributed WLP (DWLP) network consists of
@ WLP’s. The output is obtained by computing
a weighted average

[0,1] and parameters 01,09 € R.

Y G0 (k)
>2 7 (k)

weighted with 7, € %, ¢ = 1,2, ..., Q.

y(k) = 9)

In what follows we make the following non-
restrictive assumptions: the partitioning is add-
one and made using triangular F3’s; the t- and
s-norms are selected as the product (atb = ab)
and the probabilistic sum (asb = a + b — ab). It is
now straightforward to find analytic expressions
for the gradients with respect to system parame-
ters 0: Qg g, 1yemns aj,i,nAi; bjﬂ"l,..., bj,i,nB,i—l Vj,Vi,
wy V7, Vb, \Vr, 01,02 by computing the deriva-
tives of the various model components, and using
the chain rule. For simplicity of the notation, the
indexing for all ¢’s (¢ =1,2,...,Q) is omitted, as
in (1)—(8). For brevity, we omit the expressions for
the gradients of the LP’s here (see, e.g., (Ikonen et

al., 2000)). Given the expressions for the gradients

through the static part, the a—z” (k)’s, for each ¢,

the gradients with respect to the parameters of
the dynamic filters are obtained from
aam-,m 82‘j

ov ov 0z;
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where the gradients of the dynamic part are given
by
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Notice, that the gradients can be approximated
using finite differences, too, but this may be far
too time-consuming for practical applications.

It is also straightforward to construct distributed
Hammerstein logic processors (HLP), using the
same ideas as above.

3. DISTRIBUTED HAMMERSTEIN LOGIC
PROCESSORS

In the Hammerstein structure, the linear dynamic
part follows the static (nonlinear) part. Let the
membership g, € [0, 1] in the b’th set be obtained
from the partitioning the input space of one of
the system inputs z;, i.e. for b =1,2,...,B , it is
obtained from

iy (k) = Fp (2 (k) , ») (15)

where the input space is partitioned using mem-
bership functions of form Fp, parameterized with
some associated parameters -;. The logic processor
is described by equations (6)—(8).

The output U (k) of the Hammerstein logic pro-
cessor (Ikonen, 2001) is then obtained by filtering
the LP output 7 (k) € [0,1] with a linear filter

Al H)o(k)=B"(¢ ") D(k—d) (16)

v (k) € R, where the last coefficient of the poly-
nomial B* is given by

na np—1

=14 an— Y by (17)
n=1
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The output of a distributed Hammerstein LP
network is obtained from (9) by replacing v, (k)’s
with U, (k)’s.

The Hammerstein LP can be separated into two
blocks v (k) = f3 (f; (x(k))) where f; is a static
nonlinear mapping and fs is a linear dynamic func-
tion. It could be of interest to restrict the output
v of the HLP into the unit interval, as this would
enable to interpret the HLP as a dynamic logical

mapping; for process identification purposes only,
this is not necessary, however. Notice, that when
approximating nonlinear dynamic MISO systems
with the Hammerstein LP’s, they do not allow the
identification of separate dynamics for each input,
nor transient cross-dynamics.

The expressions for the gradients of the Hammer-
stein LP output with respect to its parameters are
obtained from

Ala™) e ) (18)

=9 (k—d—ng) -0 (k—m)
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—P(k—d—n) -7 (k—d-np)
and
Al 8%“ (k) = B (¢7) 887 ( — d)(20)

where BBTVP denotes the gradients of the static
LP with respect to a generic parameter w, €
{Wypy Ary01,02} ¥7r,¥b , and for all ¢ =1,2,...,Q
(Notice again that the indexing for ¢’s was omit-
ted, for simplicity of notation).

4. PROCESS IDENTIFICATION USING
DWLP

Identification (Ikonen and Najim, 2002) consists
of four stages. Assume that a proper data set is
available and let us concentrate on some of the
issues in structure selection, parameter estimation
and validation concerning DWLP models. A sim-
ilar discussion holds also for the distributed HLP
models.

Assume that the sets partitioning the model
input-output spaces are given, i.e. p, (k)’s can
be obtained given z;(k)’s, and 7,’s are known
(This assumption underlines the fact that the
main emphasis is to reveal the logical relation-
ships between user-defined concepts; remember
that non-parametric regression methods, for ex-
ample, provide efficient tools for mere function
approximation or data-driven optimization prob-
lems.) The orders of the feedforward and feedback
dynamics, ny,, and npg, , need to be specified for
alli, 5 =1,2,..., I and each WLP. It is common to
select these based on a prior: knowledge, although
tools such as sub-space methods (Knudsen, 2001)
can be useful, too. The number of AND-nodes, R,
for each WLP remains to be set. The parameter R
controls the size of the rule base within each WLP
and its selection is dependent on the resolution
provided by the partitioning.



Given the output data y (k), k = 1,2, ..., K, where
K is the number of data patterns, the target
values v, (k) for the ¢*" WLP can be obtained
by assuming a triangular membership function F
with its centre placed at 7,:

vq (k) = (21)
k)—T7 Too1— Yk
max [min <y_( ) _yqfl , yiﬂ y_( )> ,0}
yq - yq—l yq+1 o yq
and taking 7y = —o0, Ygyq = oo. Collecting

all the WLP parameters to be estimated in a
parameter vector 6,, we have the following )
separate optimization problems

min Y |(vg () = 7 (. 0,))°]  (22)

for all g, which can be solved using standard
optimization methods.

Our simulations have indicated that the Levenberg-
Marquardt method is efficient for solving the
problem. However, the problem is actually a con-
strained optimization problem since we need to
have w5, Ar € [0,1] and B, (2) /A (2) stable
(to ensure the boundedness of the gradients). In
order to keep the number of function and gradient
evaluations small (due to the computational costs
involved), we have found that it is sufficient to
use a simple projection method to ensure these
constraints. Namely, after each parameter update,
the new parameters have been projected into the
allowed region

wy,p = max (min (w%}%’l, ),0) (23)

AT::Inax(nnn(A&M,1),o) (24)

L

LM and MM are the parameters obtained

where w

from the unconstrained Levenberg-Marquardt method,

and stability is ensured by projecting the feedback
polynomial with

Aji(g ) =1+yafihg ' + .. (25)
eyl e

where 0 < v < 1, repeating with the projected
parameters until all poles lie in the desired stable
region. Note that the constraints on the steady
state gain of BJ, (¢7') /Aji(¢7") were taken
into account in the proper computation of the
gradients of the model structure.

One of the main advantages of the DWLP’s is
the transparency of the resulting model. The
dynamics are captured in the parameters of the
linear transfer functions, from where the pole-
zero maps etc. can be easily obtained. Note that
also non-linear dynamics can be expressed with

the DWLP approach, provided that the dynamics
do not exhibit output-multiplicity. Due to the
unit steady-state gain constraints in the dynamic
parts, there is no redundancy in the gains of the
static and dynamic parts.

The parameters of the logic processors are easy
to interpret and their examination as such re-
veals much of the logical relationships. To sim-
plify further, the logic processors can be con-
verted into a binary-weighted rule-base form us-
ing the threshold-method (Pedrycz, 1993). In the
threshold-method, all w,; < a are set to 0’s and
others to 1’s; similarly, all A\, > 1 —« are set to 1’s
and others to (’s. Using the unit-element proper-
ties of t- and s-norms, the network contents can
then be expressed as rules for each output class
consisting of simple AND and OR connectives.
However, the existence of the sigmoid function
complicates slightly the approach. The essence
of the approach is recovered by remapping the
upper and lower bounds specified by the threshold
parameter « through the inverse of the nonlin-
ear function. For the sigmoid function a modified
threshold method can be used: all w,, < «, are
set to 0’s and others to 1’s; similarly, all A, >
1 — a* are set to 1’s and others to 0’s, where

ag:m—-£m<1_a> (26)

g9 [

. 1 «
at =1 01+021n<1a> (27)

5. A NUMERICAL EXAMPLE

In the following, we illustrate the approach with
a simple numerical example using data from a
simulated continuous stirred-tank reactor (CSTR)
where a series and parallel van der Vusse reaction

A BB (28)
245 p (29)

takes place, for exact details see (Chen et al.,

1995). The plant input consisted of step changes in

the normalized feed flow, VLR The concentration,

cp, of the component B was measured and it rep-
resented the output. For simplicity, only the SISO
case was considered. At the considered region,
VLR € [3,15], the plant exhibits non-minimum
phase dynamic behavior dependent on the point
of operation (for a nice presentation, see (Gatzke
and Doyle ITI, 1999)). Data for identification was
generated by simulating the plant with a ramp of

step changes from VLR = 3h7! to VLR = 15h~!

using AVLR = 1h~! and ATgep = 30min, and
backwards, and measuring the input and output
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Fig. 1. Evolution of the RMSE.

signals corrupted with IV (07 0.00152) with a sam-
pling time of 1 min. This resulted in a data set of
780 input—output patterns.

The input—output partitioning was given by tri-
angular fuzzy sets with centers

={1,3,5,..,17}h ! (30)

v

Vry
(b=1,2,...,9) for the input and

5, € {0.80,0.95,1.00,1.05,1.10} mol/1 (31)

(¢ = 1,2,...,5) for the outputs. The number of
AND nodes R for each WLP was set to 7. The
orders of the filters were chosenasng4 =2, ng = 3
for each WLP, with d = 1. This setting resulted
in 77 parameters to be estimated from data, for
each of the 5 WLP’s.

1000C

The parameters were estimated using the Levenberg-

Marquardt method, and projecting the parame-
ters to the allowed region after each iteration (see
previous section). The parameters of each of the
WLP’s were estimated 25 iterations at a time, and
the performance of the overall DWLP was tested,
until a maximum number of iterations (10000) was
reached.

Figures 1-3 illustrate the simulation. The evolu-
tion of the RMSE for each WLP (dashed lines)
and the DWLP (solid line) is shown in Fig. 1.
The error decreases rapidly during the first itera-
tions, but slows down as the number of iterations
increases.

The prediction using the estimated WLP’s (solid
line) and the corresponding data (thin line) are
shown in Fig. 2, together with negative absolute
errors. The prediction by the DWLP network
(solid line) and the corresponding output data
(thin line) are shown at the top of Fig. 3; below
are shown the absolute error, |cg (k) — cg (k)|,
and process input VLR (k). From approximation
accuracy point of view, a reasonable model was
obtained: Clearly, the logical mappings between
the input and output classes are properly identi-
fied, as well as rough approximations of the non-
minimum phase dynamics.

However, the essence of the distributed fuzzy
modelling approach is not in the accuracy but in
the transparency of the estimated mapping. For
example, from the estimated WLP’s we can obtain
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Fig. 3. Behaviour of the DWLP model.

the following type of rules for the static logical
mapping (o = 0.1):

(V.
if (V—R is X2>
or (VKR is X3>

or (1 is X3 and z is X4>
Vr

(32)
then cg = 0.95

where the linguistic labels X, are associated with

the sets defined using the VLR ’s. Similar simplifi-

cations can be extracted for all other WLP’s.

The nonlinearity in the identified DWLP dynam-
ics is clear to see by looking at the pole-zero maps
for the WLP linear dynamic parts, Fig. 4 shows
a part of the map collecting the poles and zeros
of all WLP’s. Clearly, for WLP’s 2 — 5, ¢, €
{0.95,1.00,1.05,1.10}, stable non-minimum phase
filters were estimated, whereas the estimation for
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Fig. 4. Pole-zero map. Subscripts refer to the
corresponding WLP index gq.

the 1°* WLP, ¢g, = 0.80, resulted in a stable
oscillating filter with all zeros inside the unit
circle, but with nonzero imaginary parts. This a
priori unexpected behavior can be addressed to
the small amount of information rich data for the
15 WLP.

6. CONCLUSIONS

A distributed fuzzy Wiener model structure was
considered. The model structure and the neces-
sary gradients required by gradient-based param-
eter estimation methods were given. Parameter
projection and a modified threshold method were
discussed. A simulation example illustrated the
approach in process identification.

Even if the computational costs are somewhat
increased, the distributed Wiener logic processor
approach is appealing from the point of view of
accuracy of the predictions, transparency of the
model (role of its components, interpretation of
its parameters), as well as the simplicity of the
analysis of the behavior of the nonlinear dynamic
model obtained (predictable interpolation and ex-
trapolation properties, applicability of the analy-
sis tools for linear dynamic systems).
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