
On Sparsity as a Criterion in

Reconstructing Biochemical Networks ⋆

Torbjörn E.M. Nordling ∗ Elling W. Jacobsen ∗

∗ Automatic Control, School of Electrical Engineering, KTH Royal
Institute of Technology, SE-100 44 Stockholm, Sweden (e-mail:

tn@kth.se, jacobsen@kth.se).

Abstract: A common problem in inference of gene regulatory networks from experimental
response data is the relatively small number of samples available in relation to the number of
nodes/states. In many cases the identification problem is underdetermined and prior knowledge
is required for the network reconstruction. A specific prior that has gained widespread popularity
is the assumption that the underlying network is sparsely connected. This has led to a flood
of network reconstruction algorithms based on subset selection and regularization techniques,
mainly adopted from the statistics and signal processing communities. In particular, methods
based on ℓ1 and ℓ2-penalties on the interaction strengths, such as LASSO, have been widely
proposed and applied. We briefly review some of these methods and discuss their suitability for
inferring the structure of biochemical networks. A particular problem is the fact that these
methods provide little or no information on the uncertainty of individual identified edges,
combined with the fact that the identified networks usually have a large fraction of false
positives as well as false negatives. To partly overcome these problems we consider conditions
that can be used to classify edges into those that can be uniquely determined based on a given
incomplete data set, those that cannot be uniquely determined due to collinearity in the data,
and those for which no information is available. Apart from providing a label of confidence
for the individual edges in the identified network, the classification can be used to improve
the reconstruction by employing standard unbiased identification methods to the identifiable
edges while employing sparse approximation methods for the remaining network. The method
is demonstrated through application to a synthetic network in yeast which has recently been
proposed for in vivo assessment of network identification methods.
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1. INTRODUCTION

Interacting genes, proteins and metabolites form dynam-
ical systems controlling cellular processes (Wolkenhauer
et al., 2005). The architecture of these systems varies
among organisms, cell types, developmental phases, envi-
ronmental and epigenetic conditions (Huang et al., 2009).
While the genetic code provides the blueprint for the
system components, it is the context dependent interac-
tions that generate the specific biological function. A key
problem in systems biology is the inference of the direct
causal interactions underlying a given function (Wolken-
hauer et al., 2009). Network reconstruction based on gene
expression data obtained from in vivo experiments in
which the system is perturbed by known disturbances and
the resulting gene activities are measured, can reveal all
direct causal interactions existing within a set of observed
genes (Hecker et al., 2009; Tegnér and Björkegren, 2007;
Gardner and Faith, 2005; Goncalves and Warnick, 2008).

It is important to distinguish network inference, as dis-
cussed herein, from the problem of constructing predic-
tive models. In particular, a model with good predictive
properties does not by any means need to reflect the

⋆ This work was supported by the Swedish Research Council (VR).

true structure of the underlying network (Nordling and
Jacobsen, 2009). Similarly, in network inference one is
primarily interested in the existence and secondarily in
the strength of individual interactions, implying that the
predictive properties of the overall network model may be
almost arbitrarily poor.

To successfully infer the biochemical network that underly
a given biological function of interest, two problems must
be resolved. First, sufficiently informative data that al-
low discrimination between models with different network
structures must be recorded. Second, the “correct” net-
work model with a structure including only the active
gene interactions must be selected based on the recorded
data set. During the last decade the second problem,
that of reverse engineering biochemical networks based
on given data, has received significant interest in the
bioinformatics and systems biology communities and a
multitude of traditional estimation methods and novel
inference algorithms have been adopted and developed;
see e.g., the review articles Hecker et al. (2009); Tegnér
and Björkegren (2007); Bansal et al. (2007); Gardner and
Faith (2005). Concerning the first problem, the availability
of sufficiently informative data for structure discrimina-
tion, the major focus has so far been on the fact that
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there usually are fewer response samples available than
the number of components in the network. This renders
the network reconstruction problem underdetermined, and
some form of prior knowledge is hence required to obtain a
unique estimate of the network structure. Since it is known
that most gene regulatory networks are relatively sparsely
connected, various variable selection methods from sig-
nal processing, statistics and machine learning have been
adopted to infer the sparsest network that can explain the
available data set. See the above reviews and references
therein.

In this paper we address the problem of identifying net-
work structures based on incomplete data sets. We first
briefly review some of the most popular subset selec-
tion and regularization methods for variable selection and
discuss their suitability for reconstruction of biochemical
networks. It is important to emphasize that inference
of biochemical networks differ from the typical problems
faced in statistics and signal processing, from where most
methods originate, in the sense that sparsity is a means
for determining the “true” network structure and not an
aim in terms of predicting or compressing data with good
accuracy using as few variables as possible. In this paper
we therefore propose to apply criteria based on sparsity
only to those parts of the network for which the available
response data do not allow unique and statistically signifi-
cant determination of the direct interactions. To make this
feasible we consider conditions that can be used to divide
all potential network interactions into three classes: those
that can be uniquely identified with statistical significance,
those for which a unique solution can not be determined,
and those for which no significant information is available
in the given data set. The derived conditions also provide
some insight into how experiments should be designed to
identify the connectivity of specific genes. Based on the
derived conditions, we propose a strategy in which we first
identify the statistically significant interactions using stan-
dard unbiased identification methods, and then identify
the remaining network using LASSO regularization, i.e.
imposing an ℓ1-penalty on the interactions in this part of
the network.

We start the paper by defining the problem and pro-
viding a brief overview of methods for subset selection
and regularization. We then derive conditions for uniquely
determining a given network edge, i.e., a direct interaction
between two given genes, from available data. For the
purpose of insight, we first consider the problem in a de-
terministic setting and then extend the derived conditions
to a stochastic setting in which the measurements are
assumed to be corrupted by noise. Finally, we demonstrate
the usefulness of the proposed method by application
to a synthetic network in yeast which recently has been
proposed for in vivo assessment of network identification
methods (Cantone et al., 2009). For comparison we also
apply the frequently employed LASSO regularization to
the same problem.

2. PROBLEM DESCRIPTION

We consider gene regulatory networks that can be de-
scribed by a system of linear ordinary differential equations
(ODEs), i.e. a linear state-space model

dx

dt
(t) = Ax(t) + B (p(t) − f(t)) (1a)

y(t) = Cx(t) + e(t). (1b)

The state vector x(t) = [x1(t), ..., xn(t)]T is here restricted
to only include mRNA abundances of the considered genes,
and we use the term gene space to refer to the state-
space. The designed input or perturbation vector p(t) =
[p1(t), ..., pl(t)]

T contains all external factors used to per-
turb the system by changing the experimental conditions,
and is possibly corrupted by unknown perturbations or
process errors represented by a random vector f(t) =
[f1(t), . . . , fl(t)]

T . The observed output or response vector
y(t) = [y1(t), . . . , yo(t)]

T contains the measurement of the
dependent variables, corrupted by random measurement
errors e(t) = [e1(t), . . . , eo(t)]

T .

If we directly measure the mRNA level of all genes in
the network, then the matrix C is diagonal. Similarly, if
we directly perturb the rate of transcription, i.e. change
in mRNA level, of all genes independently, then also
the matrix B is diagonal. In this case we can without
restrictions scale our perturbations and responses such
that B and C are identity matrices and o = l = n.

The aim of network reconstruction is to infer the signed
structure of the interaction matrix A, corresponding to
the signed adjacency matrix of the network represented
as a directed graph, based on recorded perturbations and
response data. Apart from the signed structure, it is
usually of interest to also estimate the size of the non-zero
elements of A, i.e. the strength of the interactions.

We limit ourselves to consider the use of steady-state data
only, i.e. data recorded after applying a linear combination
of constant perturbations and measuring the response
of the system when it has reached a new steady-state.
However, the results we derive can easily be extended to
the case with time-series data if one considers a discrete
time model, see e.g., Schmidt et al. (2005). Let Y ∈ R

n×m

denote the matrix of all measured responses to the m
combinations of perturbations stored in the column vectors
of P ∈ R

n×m and E,F ∈ R
n×m be unknown noise

realizations, then our data model is

Y = −A−1P + A−1F + E = GP − GF + E. (2)

where G is the steady-state gain matrix corresponding to
the inverse of the interaction matrix. Near a particular
stable physiological state the GRN hence acts as a linear
mapping from the space of all possible perturbations to the
corresponding responses of the measured state variables,
G : R

n 7→ R
n.

The network reconstruction problem corresponds to find-
ing a solution to

AY = −P + R, (3)

such that A has a structure which is consistent with
the structure of the network that generated the data.
Here R is a residual that should reflect the errors in the
measurements and perturbations.

We are here primarily concerned with the situation in
which the number of experiments m is less than the num-
ber of network nodes n, rendering equation (3) underde-
termined. The methodology as such is, however, relevant
also for cases in which m ≥ n.
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3. SPARSE IDENTIFICATION METHODS

The problem of determining the structure of the interac-
tion matrix A from the observations Y and P corresponds
to the problem of variable selection as considered in ma-
chine learning, statistics and signal processing. However,
as pointed out above, an important difference is that, in
the case of biochemical network reconstruction, variable
selection serves as a means for detecting physical variable
influences when the problem is underdetermined, while in
other contexts the aim is usually to reduce model com-
plexity or compress signals.

For the case in which (3) is underdetermined with m < n,
the ordinary least squares solution will not be unique, and
will in general be overfitted by forcing the residual R to
zero. Furthermore, it will usually result in a full matrix
A not reflecting the structure of the “true” network. To
partly overcome these problems when inferring biochemi-
cal networks, for which m < n is more the rule than the
exception, it has become common practice to utilize the
knowledge that biochemical networks usually are sparse,
and based on this search for the sparsest solution A that
satisfies (3) (Yeung et al., 2002; Tegnér and Björkegren,
2007).

There are a number of available approaches for sparse
approximations, of which stepwise regression, or subset
selection, methods and regularization corresponding to
convex relaxations are the most commonly employed, see
e.g. Tropp (2006). Due to space limitation we here only
provide a brief overview of some of these methods.

Stepwise regression, or stepwise selection, is based on se-
quentially picking variables and then stopping the selec-
tion according to some criteria like the Aikaike Information
Criterion. This includes forward selection methods, such as
matching pursuit, backward selection, all subsets and least
angle regression (LARS). In these methods each row of Y ,
corresponding to the recorded responses of a given gene,
is considered as a regressor and the idea is to sequentially
pick those regressors that are most correlated with the
regressand. While these methods can succeed in finding
the sparsest model (Couvreur and Bresler, 2000), it is well
known that they also may fail completely (Chen et al.,
1998). Furthermore, several of these methods will often fail
to select variables that are important but closely correlated
with a previously picked variable. The latter problem is
dealt with in LARS (Efron et al., 2004), which has been
used with some success to identifying gene regulatory
networks, in e.g. Madar et al. (2010).

A more robust approach to sparse approximation is offered
by regularization methods, such as the LASSO formulation
proposed in Tibshirani (1996). The idea here is to use
optimization methods to determine the sparsest network
that can explain the available data. Thus, ideally one seeks
to minimize the ℓ0 norm of the coefficients in A under a
constraint on the squared residual of (3), or minimize the
squared residual under a constraint on the ℓ0 norm of A

min
A

‖A‖ℓ0
min

A
‖AY + P ‖ℓ2

(4)

s.t. ‖AY + P ‖ℓ2
≤ λ s.t. ‖A‖ℓ0

≤
1

λ
. (5)

Alternatively a weighted unconstrained formulation is
used

min
A

‖AY + P ‖ℓ2
+ λ ‖A‖ℓ0

. (6)

These problems are however computationally intractable
since the ℓ0-norm causes a combinatorial explosion and
are therefore typically relaxed using the ℓ1 norm instead.
The use of the ℓ1-norm, as in LASSO, makes the problem
convex and computationally attractive even for large scale
problems. However, there is no longer any guarantee that
the solution will correspond to the sparsest network.
Conditions on the network and data for which the solution
of the relaxed problem converges to the sparsest network
are given in Candes et al. (2006), but these are in practice
impossible to evaluate in the case of biochemical networks.
A number of variations of the LASSO problem have been
proposed, including elastic net methods (Zou and Hastie,
2005) and iterative weighted relaxations (Julius et al.,
2009).

Relaxation methods have frequently been employed to
infer gene regulatory networks, see e.g. Hecker et al.
(2009); Tegnér and Björkegren (2007); Gardner and Faith
(2005). However, as is clear from many studies, such as the
DREAM challenges aimed at benchmarking different re-
construction methods (Marbach et al., 2010), inference of
gene regulatory networks usually result in a large fraction
of false negatives and false positives (Stolovitzky et al.,
2009). This is partly related to the limited information
content in the available data, but undoubtedly also to the
algorithms employed for inference.

While sparse approximation methods appear attractive for
biochemical network reconstruction, for which there is of-
ten a lack of data, it is important to point out that several
potential pitfalls exist. The first problem is related to the
rather obvious fact that the assumption that the sparsest
network explaining available response data corresponds to
the “true” network does not necessarily hold. The second
problem stems from the fact that determination of the
sparsest network is a combinatorial problem which can
only be solved for small networks, and hence one must
resort to greedy search methods or convex relaxations as
discussed above. Although there exists theoretical results
on when the relaxed problem converges to the original
solution, these are hard to evaluate in practice and hence
one can almost never guarantee that the methods are able
to provide the sparest network. In applications to biochem-
ical networks, one also typically finds that the methods
provide a relatively large number of false positives, i.e.,
identification of edges absent in the “true” network, and
false negative, i.e., missed edges present in the “true”
network, see e.g. Stolovitzky et al. (2009). Finally, the
methods provide little or no information on the probability
of individual edges being correctly identified.

The are several possible remedies to the above mentioned
problems. The first is additional a priori information, such
as the probability of existence of specific edges, provided
that such information is available. Second, one can perform
additional experiments to increase the information content
in Y and P . However, before requesting more information
one should analyze the information content in the available
data more in detail rather than simply applying brute force
methods. In particular, one should consider whether the
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available data allow for a unique and precise identification
of parts of the network, and if this is the case only apply
the sparsity criterion to those parts of the network for
which sufficient information for a unique identification is
lacking. The latter is considered below. We first consider
the deterministic case to derive precise conditions for iden-
tifiability of individual network edges, and then expand the
results to the case with noisy measurements.

4. CONDITIONS FOR INFERENCE FROM
NOISE-FREE DATA

For the noise-free case with m < n, the network recon-
struction problem corresponds to solving the underdeter-
mined system of linear equations AY + P = 0 such that
the structure of A corresponds to the structure of the
network that generated the data. This problem may be
solved for each row of A independently using the standard
regression formulation

Y T

︸︷︷︸

,Φ

AT
j

︸︷︷︸

,θ

= −P T
j

︸ ︷︷ ︸

,ξ

. (7)

Here Aj denotes the jth row of the unknown network ma-
trix and P j denotes the jth row of the known perturbation
matrix. We introduce the regressor matrix Φ, such that
each regressor φi is the ith row of the output matrix Y ,

the parameter vector θ = AT
j and the regressand ξ = −P j

in order to simplify the notation and to make the analogy
to standard regression problems clear. Based on (7) we
are in a position to apply well known results from linear
algebra to deduce properties of the solution.

Our aim is to determine conditions on the data Y and P ,
corresponding to the regressor Φ and regressand ξ, which
allows a unique determination of an individual parameter
θi, corresponding to an element of A representing a single
edge in the network. Such a condition can be derived based
on results concerning linear independence of the regressor
vectors.

Theorem 1. Consider the linear regression problem Φθ =
ξ with Φ ∈ R

m×n, θ ∈ R
n and ξ ∈ R

m. Let Φj 6=i

and be the matrix obtained by removing row i in Φ

and T j 6=i = Φj 6=i

(
ΦT

j 6=iΦj 6=i

)−1
ΦT

j 6=i be the projection
matrix onto the linear subspace spanned by Φj 6=i. Then
the coefficient θi can be uniquely determined if and only
if (I − T j 6=i) φi 6= 0. In particular, (I − T j 6=i)φiθi = (I −
T j 6=i)ξ.

Proof. The sufficient condition follows trivially from the
observation that if the regressor φi cannot be expressed
as a linear combination of all the other regressors, i.e.,
spans a unique direction in the column space of Φ, then
the corresponding direction in the regressand ξ is uniquely
described by φi. The necessary condition follows from the
fact if any subset is linearly dependent, then there exist an
infinite number of linear combinations that yield the same
projection on ξ.

Thus, if a regressor φi = Y T
i , corresponding to the

observation vector of gene i, cannot be expressed as
a linear combination of all the other gene regressors
φj 6=i, then we say that it is linearly independent and the
corresponding coefficients aki ∀k in column i of A can then

be uniquely determined from the observations Y and P .
If also the corresponding regressand ξ = P T

k is linearly
independent of the gene regressors φj 6=i, then there exist

an edge from gene i to gene k, while if ξ = P T
k can be

expressed as a linear combination of the regressors in φj 6=i,
then we say that it is linearly dependent and conclude that
no directed edge exist from gene i to gene k. Finally, if
a regressor φi is a null vector then no information exist
in the available data concerning the existence of edges to
gene i, and one might therefore as well set aki = 0 ∀k. In
summary, we can based on the available samples for the
underdetermined problem classify the network edges into
four groups:

(1) existing edges with non-zero weights
(I − T j 6=i)φi 6= 0 and (I − T j 6=i)ξ 6= 0,

(2) non-existing edges
(I − T j 6=i)φi 6= 0 and (I − T j 6=i)ξ = 0,

(3) uncertain edges with possible non-zero weights
(I − T j 6=i)φi = 0,

(4) edges for which no information exist in the available
data set
φi = 0.

Note that sparse approximation algorithms in general do
not utilize the above information explicitly. However, since
in the deterministic case it is reasonable to force the
residual to zero, most algorithms will implicitly utilize
the above information since they in principle are based on
using the null space of the regressor matrix Φ to minimize
the ℓ1-norm of the coefficient matrix. This implies that
they in the deterministic case typically will identify edges
belonging to class (1) and (2) correctly, set edges in class
(4) to zero and then minimize the ℓ1-norm of edges in
class (3) using the degrees of freedom offered by the
null space of Φ. Thus, in a deterministic setting the
main use of the derived conditions is that it provides
explicit information to the user on which edges that
have been identified with certainty, which edges that
are uncertain and which edges that have been set to
zero due to lack of information in the available data.
However, in a more realistic setting with measurements
corrupted by noise, the conditions will prove useful also
in the identification procedure since statistical testing
can be used to classify the edges according to the above
scheme prior to applying stepwise regression or convex
optimization. This is discussed in more detail below. We
first illustrate the results with a simple example.

We consider a 5-gene network engineered in yeast cells by
Cantone et al. (2009) with the specific aim of evaluating
network reconstruction algorithms. The network has a
known structure

A =








−1 0 1 −1 0
1 −1 0 0 −1
0 1 −1 0 0
0 0 1 −1 0
0 −1 1 0 −1








, (8)

The network is illustrated in Fig. 1. Note that the meth-
ods discussed in the paper are relevant for large scale
networks with hundreds or thousands of nodes, but that
this simple example serves to illustrate the problems and
methodologies well. We perturb the 2nd, 3rd and 5th gene
(GAL4, SWI5, GAL80) in three independent transcrip-
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Fig. 1. True IRMA network: Structure of the network with
the corresponding element of the interaction matrix A
marked on each edge.

tional perturbation experiments and record the response,
which gives the regressor matrix

Φ =

(
0 1 1 1 0
0 −1 0 0 1
0 −1 −1 −1 1

)

, (9)

We consider identification of the third row of A, cor-
responding to edges affecting gene 3 (SWI5), with the
corresponding regressand.

ξ = ( 0 −1 0 )
T

. (10)

Using the conditions in Theorem 1 we find that regressors
φ

2
and φ

5
are linearly independent. Thus, the data contain

sufficient information to infer the directed edges from gene
2 and gene 5 to gene 3. For regressor φ

2
we find that

also ξ is linearly independent of the remaining regressors,
and hence the corresponding edge belongs to class (1).
For regressor φ

5
we find that ξ is linearly dependent on

the remaining regressors, and hence the edge belongs to
class (2), i.e., it does not exist. Regressor φ

1
is the null

vector and hence belongs to class (4), i.e. we cannot deduce
any information from the data concerning the existence
of an edge from gene 1 to gene 3. Regressors φ

3
and

φ
4

are linearly dependent and hence the corresponding
edges from genes 3 and 4 to gene 3 belong to class (3),
and we need extra information to make a certain decision
as to their existence. If we minimize the ℓ0-norm of the
coefficient matrix, using a combinatorial search, we find

θR = ( 0 1 0 −1 0 )
T

, (11)

which is as sparse as the true network, but still fails to
correctly identify the edges from genes 3 and 4.

In the example above we found that we after 3 experi-
ments had obtained a regressor matrix with two linearly
independent regressors. Due to space limitations we do not
derive any detailed conditions here on when perturbation
experiments on sparse networks yield linearly independent
regressors in the deterministic case. However, two obvious
cases where one will obtain linearly independent regres-
sors are (i) when one in m experiments obtain response

in m genes only using linearly independent perturbation
vectors, i.e., the remaining genes show no steady-state re-
sponse, and (ii) when one perturb the mi genes which have
edges from gene i in mi linearly independent perturbation
experiments. The latter condition was fulfilled for genes 3
and 5 in the example above.

For the case with measurement noise we will in general
not obtain any linearly independent regressors until we
have performed n linearly independent perturbation ex-
periments, corresponding to the number of genes in the
network. However, in this case one should use some form of
statistical hypotheses testing to evaluate if the underlying
noise-free regressor in fact is linearly independent. This is
discussed next.

4.1 Conditions for classification based on noisy data

The conditions in Theorem 1 are based on linear indepen-
dence of the rows of the response matrix Y . In general,
a row Y i is linearly independent of the other rows if the
rank of Y j 6=i, obtained by removing row Y i, is less than
the rank of Y . Consider now the case in which we measure
the mRNA abundances with some error, here modelled as
normally distributed noise E such that

Y = Y 0 + E, Y ,Y 0,E ∈ R
n×m (12)

where Y 0 denotes the true mRNA abundances. If the
elements of the noise matrix E are normally distributed,
it will in general be a full matrix with full rank, and
with all submatrices also having full rank. This implies
that Y in general will share the same properties, and any
submatrix obtained by removing a row from Y will hence
have rank r = min(n−1, m). Thus, only if m ≥ n will the
rank drop when removing a row, and hence no regressors
will be linearly independent until we have collected as
many samples as there are nodes (genes) in the network.
However, as shown above, the underlying noise free matrix
Y 0 will often have linearly independent rows. Hence, we
need to employ statistical hypotheses testing to determine
if a row of Y 0 is linearly independent based on knowledge
of Y and some properties of the noise E.

There exist a number of statistical methods for determin-
ing the rank based on noisy data. We will here employ
a simple hypothesis test based on the singular values of
the regressor matrix, which works if the separation be-
tween the singular values of Y and E is sufficiently large.
Consider again equation (12). According to the Mirsky
Theorem in Stewart (1990) the root mean square (RMS)
of the error in the singular values of Y is bounded by the
RMS of the singular values of the error matrix E. Thus,
one can with some confidence state that Y 0 is unlikely
to be rank deficient if the RMS of the singular values of
the error matrix is less than the smallest singular value of
Y . However, this condition can be quite conservative and
hence not too useful to test for rank deficiency. Assuming
that the elements of E are normally distributed with
zero mean and variance ǫ2 and the singular values simple,
Stewart (1990) derive an expression for the expected sum
of squared errors ∆σ2

i on the singular values of Y

E

[
∑

i

∆σ2

i

]

= mǫ2. (13)
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edges have been identified. To partly overcome these prob-
lems we have in this paper considered dividing the problem
into two steps. In a first step we use standard tools from
linear algebra to determine linearly independent regres-
sors, and based on that the edges that can be uniquely
determined from the available data. These edges are then
fitted using standard unbiased identification methods. In
a second step we employ sparse approximation, such as
LASSO, to determine a sparse solution for the remain-
ing network. The efficiency of the proposed method was
demonstrated on a five gene synthetic network in yeast
which has been developed to evaluate network reconstruc-
tion methods. Apart from yielding improved results over
LASSO applied to the complete network, we highlight that
a significant advantage is that the solution is accompanied
by a label of confidence for the individual edges in the
identified network.
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