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Abstract: Integral gas engines represent a critical element in the US gas pipeline network.
The stricter emission requirements now facing also these engines have prompted the question
for advanced control strategies. Among them MPC has turned out to be a promising choice.
Unfortunately, MPC has two main drawbacks a high computational and a demanding and non
intuitive tuning effort. These issue become even more critical if speed and precision of the
hardware is limited, as it is often the case in embedded solutions. This paper extends previous
work on the control of such systems and concentrates on the latter issue, the selftuning. It
proposes a tuning approach based on the well-known equivalence between MPC and a set of
linear controllers as well as on the use of a mixed cost function which explicitly includes the
numerical condition of the MPC problem. As the paper also shows, this yields to an impressive
increase in the efficiency and performance of the online algorithm by reducing the number of
QP iterations necessary at each step.
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1. INTRODUCTION

The natural gas distribution system of the United States
is a grid of pipelines and compressor stations to compen-
sate pressure losses and adjust the flow to the actual gas
consumption of the end users. These stations are typically
equipped with integral engines – with combustion cylin-
ders and the compressor acting on the same crankshaft.
Mainly, these are turbocharged two stroke combustion
engines, which are fueled directly with natural gas from
the pipeline, see Alberer et al. [2008].

Due to the very high installation cost, only a few changes
occur during the lifetime of a compressor station. These
engines were of course not designed for the upcoming
emission levels. In particular NOx emissions have to be
reduced, these are strongly connected to transient changes
of the engine. In this case advanced control methods are
a sensible alternative besides a mechanical upgrade.The
MIMO nature of the plant, the existence of hard bounds on
the manipulated variables and soft bounds on the outputs
speak for a model predictive approach. Moreover, load
changes are known in advance and therefore can be taken
into account in the control task. Limitations of predictive
control are the extensive tuning process and the high
computational effort, because at every time instant an
optimization problem has to be solved. However, recent de-
velopments in available computational power and efficient
online solvers Ferreau et al. [2008] cope with this limitation
and extend the range of applications to fast realtime sys-
tems, see Ferreau et al. [2007]. An alternative method is to
shift the computational effort from online to offline by use
of an explicit MPC structure Bemporad et al. [2000]. In Al-

berer et al. [2008] explicit MIMO model predictive control
was applied to the considered compressor station and the
transient NOx emissions could be reduced significantly.
In a subsequent work the explicit MPC was replaced by a
realtime online MPC using qpOASES Ängeby et al. [2009].
Although these works led to promising results, still the
challenging task of the optimal tuning of MPC has not
been addressed, even though this task is critical for the
industrial success, as many different installations exist,
each of whom requires a specific tuning to be performed
by a technician without advanced control background.

The question, in itself, is not new. Indeed several tuning
guidelines for MPC can be found in the literature (e.g. in
Soeterboek and Toumodge [1992] or Maciejowski [2002]) as
well as their application, e.g. in Fan [2003], a strategy for
tuning of MPC for large scale two dimensional actuator
systems, like paper machine cross directional processes,
is presented. Furthermore in Fan and Stewart [2007] a
patent application based on the strategy presented in
Fan [2003] and focused on the automatic tuning of multi
variable MPC were published. In Vega and Francisco
[2007] norm based approaches for automatic MPC tuning
are proposed in combination with a mixed multi objective
optimization. An alternative automatic tuning strategy
presented in Al-Ghazzawi et al. [2001] is based on a linear
approximation of the closed loop output corresponding to
the tuning parameters and according to predefined time
domain performance specifications. In a recent work a
different method is proposed, where the unconstrained
closed loop behavior of the MPC was matched to a given
desired controller Di Cairano and Bemporad [2010].
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Unfortunately, all these methods have been developed for
generic systems and do not take in account specific prob-
lems of embedded solutions, in particular the numerical
and time aspects. The connection between both is that
the the online solution is essentially an iterative solution
and a better numerical condition can reduce the number
of necessary iterations and therefore the sample time.

This work starts from the earlier work Ängeby et al.
[2009] and extends it by a self tuning strategy which
takes in account the time and numerical limitations of
embedded systems. The main idea is to exploit the degrees
of freedom available in the cost functions to maintain
the system tracking performance while enhancing the
numerical condition.

2. SYSTEM DESCRIPTION

The considered integral gas engine consists of a six cylinder
two stroke turbocharged reciprocating gas engine with
counterflow scavenging and a compressor with three cylin-
ders (Clark TLA 6) of which the used simulation models
were derived from measurements.

Typically these engines are designed to run in a narrow
operating range, i.e. at almost constant engine speed and
power. The two main control inputs for the engine are
the injected fuel amount, with the according control signal
GFC (governor fuel command) and the wastegate position
of the turbocharger WG, which determines the boost pres-
sure and thus the air supply to the combustion chambers
(both signals are normalized from 0% to 100%). An ad-
ditional input is the desired load which is characterized
by the total clearance volume of the compressor. This
input can be seen as a measured disturbance, because it
cannot be used actively for the control task (only a slight
delay of the command is allowed) and is predetermined by
the pipeline conditions and the operation strategy of the
engine grid.

Currently these engines are equipped with two SISO PID
controllers, one to keep the engine speed n constant by the
use ofGFC, and a second one uses the turbocharger waste-
gate to control the fuel to air ratio φ and consequently
the NOx emissions too 1 . To provide low NOx emissions
– no catalytic aftertreatment devices are applied – and a
high fuel efficiency, the engine is usually operated at very
lean mixtures. Therefore during steady state operation
low emission levels can be achieved, however during load
transients high excursion of φ arise and consequently of
NOx too. The load control is performed with discrete
volumes (pockets) that can be added to the compressor
clearance volume.

Against the standard SISO PIDs the basic idea of the
actual approach is to take into account the interconnected
system behavior as well as the a priori knowledge of a
forthcoming load change. The used control scheme can be
separated in four parts, the integral engine with the inputs
GFC, WG and the compressor load torque Tc, a MPC to
control n and φ based on load information, system states
and given setpoints, a state observer and a load handler.

1 For a certain engine and constant ignition timing a unique (non-
linear) relation exists between NOx and φ.

In this case Gray box modeling was used, because some
parts of the model are based on physical principles and so
it is possible to assume a fixed structure with unknown
parameters. During identification these sub models are
identified separately in two stages. First all static gains are
determined and in a next step the dynamics are covered.
After the identification of the single parts all components
are merged to one linear discrete state space model

xk+1 = Apxk +Bpuk yk = Cpxk

with uk = [GFC, Tc,WG]
T

and yk = [n, φ]
T
,

where Ap, Bp and Cp are the according system matrices.
To cope with steady state offsets the plant model is
extended with an output error disturbance model and a
Kalman filter was used to provide the state information
for the MPC.

3. MPC FORMULATION

In order to focus on the uprising numerical problems and
the influence of the available tuning parameters on these
conditions, we shortly recapitulate the QP MPC formula-
tion used for the online MPC in the following section. The
main idea of MPC is to use a model of the system to predict
the future outputs and find an optimal control sequence
that meets the requirements concerning performance and
constraints Camacho and Bordons [2004], Maciejowski
[2002]. The optimization problem is formulated at every
time instant by taking into account the system model,
whereas a commonly used objective function is to minimize
the squared tracking error from a reference trajectory
and additionally penalizing the applied control effort. The
determination of the control signal can be formulated as
optimization problem, where the values of u during the
control horizon nCH have to be determined. The objective
function is calculated over the whole prediction horizon
nPH , whereas the control is kept constant after the control
horizon. Due to the multivariable system structure the
setpoints are defined as yref = [

yn
yφ ] and the control action

is given by u = [ uGFC
uWG

]. The objective function can be
defined as

min
u

1

2

nPH∑

k=0

(yk − yref,k)
T
S (yk − yref,k) + ∆uT

k T∆uk (1)

s.t.

uk = uk−1 +∆uk

xk+1 = Apxk +Bpuk

yk = Cpxk

u ≤ uk ≤ u k = 0 . . . nCH − 1
∆u ≤ ∆uk ≤ ∆u k = 0 . . . nCH − 1
∆uk = 0 k = nCH . . . nPH

where the tracking error is weighted by S =
[
S1 0
0 S2

]
and

the actuator movement is penalized by T =
[
T1 0
0 T2

]
with

weighting factors {S1, S2, T1, T2} > 0.

In the actual case of a linear state space representation, the
MPC optimization problem (1) can be stated in the form
of a standard QP. By use of the tracking error formulation
ek = yk − yref the problem can be written as

min
1

2
ξTET S̃Eξ +ΨT∆UT T̃∆UΨ (2)
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with

E =




C 0 0 . . . −I
CA CB 0 . . . −I

CA2 CAB CB . . . −I
...

...
...

. . .
...


 ξ =




x0

u0

...
uCH−1

yref




∆U =



−1 1 . . . 0

. . .
. . .

0 −1 1


 Ψ =




u−1

u0

...
uCH−1




S̃ = diag (S . . . S)

T̃ = diag (T . . . T )

The matrices ET S̃E and ∆UT T̃∆U can be structured in
dependency of the parts of ξ and Ψ. In (2) the block (1, 1)

of ET S̃E is multiplied from both sides with xT
0 from the

vector ξ and the block (1, 2) is multiplied with xT
0 from

the left and (u0 u1 . . . uCH−1)
T

from the right side and
so on.[

dimx × dim x dim x × CH dimu dim x × dim y

CH dimu × dim x CH dimu × CH dimu CH dimu × dim y

dim y × dim x dim y × CH dimu dim y × dim y

]

︸ ︷︷ ︸
ET S̃E

A similar partition scheme can be applied for ∆UT T̃∆U
where the blocks are multiplied with the elements of Ψ.
Blocks, which are multiplied with the vector of optimiza-
tion variables from the left and right, are collected in the
Hessian

H =
[
ET S̃E

]

(2,2)
+
[
∆UT T̃∆U

]

(2,2)
. (3)

All blocks that are multiplied only from the left with
the vector of optimization variables are collected in the
gradient matrix f

f =

[[
ET S̃E

]

(1,2)
,
[
∆UT T̃∆U

]

(1,2)
,
[
ET S̃E

]

(3,2)

]T
·Θ,

(4)

where the feedback vector Θ = [xk, uk−1, yref ]
T

contains
the actual state, the past input and the actual reference.
The resulting QP can be formulated to

min
u

1

2
uTHu+ uT f (5)

s.t. lbG ≤ Gu ≤ ubG
lb ≤ u ≤ ub.

The Hessian H and constraint matrix G remain constant,
only the gradient f and the constraint vector have to
be updated at every time instant. lbG and ubG represent
the input rate constraints and lb and ub are the absolute
constraints on the input. The QP formulation of (5) can
finally be used for the real time application of the MPC.
Basically every realtime QP solver can be used for this
task, in this case a fast and numerical efficient QP solver
was applied (qpOASES Ferreau et al. [2008]). To solve
the optimization problem (5) matrix inversion are needed
and it is known that the accuracy of an inversion depends
strongly on the condition number of the matrix for a given
precision.

4. SELF TUNING STRATEGY

As mentioned the numerical condition, in particular the
condition number of the Hessian (κ (H)) are important

for the accuracy of the solution. κ (H) can be seen as an
amplification factor for data uncertainties and roundoff
errors, hence the smaller the condition number the more
accurate results can be achieved. Moreover, when using an
online solver, which uses a homotopy method (like Ferreau
et al. [2008]) and several iterations can be necessary to
solve the QP, the accuracy and therefore the condition
number has an influence on the necessary number of it-
erations 2 and of course on the achievable sample time.
In the considered application on the compressor station
an embedded hardware system with single precision arith-
metic is available. This configuration affects the relation
between the condition number and the accuracy of the
solver. Theoretically, the possible accuracy is the machine
precision, which is about 10−7 when using single precision
arithmetic like in the particular setup 3 . In the best case
the optimal solution of the QP can be obtained with an
accuracy of seven significant digits.

A rule of thumb states that the condition number of the
Hessian is proportional to the degeneration of the accuracy
of the QP solution due to roundoff errors (∆n ∝ κ (H)).
For an accurate QP solution, at least two digits have to be
exact, which leads to the requirement that the condition
number has to be lower than 105.

The self tuning strategy proposed in this section provides
optimal weighting factors for the MPC objective function
while the basic parameters like horizons and constraints
are considered constant and constraints on control action
are given by the actuator limits. Notice that in this work
we only use a linear representation of the QP MPC and
linear simulation for the self tuning algorithm. Although a
more general approach by using the full closed loop system
with the MPC QP solver would be possible, but mainly for
reasons of computational burden and focus on the later
application this option was neglected.

4.1 Closed loop formulation of unconstrained MPC

In this section the closed loop plant representation re-
quired for the use in the parameter optimization is pre-
sented. With the unconstrained MPC QP formulation

min
u

1

2
uTHu+ uT f (6)

and the optimal solution of this QP

Uopt = −H−1 · f (7)

it is possible to transform the unconstrained MPC as a
linear feedback form. The feedback is inherited by the
update formulation in the gradient f . The gradient can
be split up into two parts a fixed one f∗ and the vector Θ
with the current state and reference information, see (4).

Uopt = −H−1 · f∗Θ = KMPC ·Θ (8)

As well known in MPC Uopt contains all control actions
in the control horizon nCH , but the MPC only applies the
first control move to the system and discards the remaining
entries. In other words, the next control move uk can be
2 Notice that in an extreme case of a too high condition number
in relation to the machine precision it might even lead to a highly
imprecise and therefore possibly useless solution of the QP.
3 When a hardware with double precision arithmetic is used the
machine precision is about 10−16 and in this case the ill conditioning
is less relevant.
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obtained by selecting only the first entry in the matrix
and the affine control law for the unconstrained MPC is
defined by

uk =
[
kmpc,xk

, kmpc,uk−1
, kmpc,yref

]
·Θ (9)

With the unconstrained solution kmpc of the MPC a
closed loop representation of the whole plant can be for-
mulated. For a fixed control and prediction horizon this
representation is a function of the four tuning parameters
(S1, S2, T1, T2). Fig. 1 shows this scheme. The closed loop
plant consists of the linear plant model, the MPC repre-
sentation and a state observer. The inputs for this system
are the two setpoint values yref,n, yref,φ and the measured
disturbance from the requested compressor torque Treq

and the resulting actual torque Tc, whereas the outputs
are yn and yφ.

ref
kmpc,y

Tc

uk−1

x̂ 

Treq

yref

kmpc,Treq
+

delay

y

Kalman filter

u
Plant

kmpc,x

kmpc,u

k

k−1

Fig. 1. Unconstrained closed loop plant representation

To reduce the computational effort during the parameter
optimization the Hessian and the gradient can be rewritten
in a tuning parameter dependent form. Due to the diagonal
structure of the weighting matrices it is possible to sepa-
rate each part in dependency of a single tuning parameter
and afterwards combine the matrix again. Therefore, the
Hessian can be formulated as H = HS1

· S1 +HS2
· S2 +

HT1
· T1 + HT2

· T2. For example the relation ET S̃E can
be separated in dependency of S1 as

ET




S1 0 0 0 0
0 S2 0 0 0
0 0 S1 0 0
0 0 0 S2 0

0 0 0 0
. . .


E = S1 · ET




1 0 0 0 0
0 0 0 0 0
0 0 1 0 0
0 0 0 0 0

0 0 0 0
. . .




E

︸ ︷︷ ︸
ES1

+S2 . . .

to determine the formulation of the matrix HS1
, which is

given by HS1
= [ES1

](2,2). With this extension it is not

necessary to perform the condensing at every change of
the tuning parameters and therefore the optimization is
less time consuming.

4.2 Parameter optimization

The idea is to treat the closed loop plant as one single
MIMO state space system only in dependency of the
four remaining tuning parameters (S1, S2, T1, T2) and to
perform the tuning with a time based approach.

For the time based strategy a tuning scenario has to be
defined. In the actual case of the integral engine a set point

profile for yi,ref was used, where initially a LS change was
done at constant n and φ and afterwards steps on n and φ
were performed at constant load. The used scenario should
lie within a representative operation and disturbance range
of the compressor station to provide a suitable tuning cri-
teria. Nevertheless it would be also possible to use several
different tuning scenarios. Regarding the application at the
gas engine the selected tuning scenario is typical for the
main operation range. Additionally it should be mentioned
that the simulations during optimization are performed
with the linear closed loop model and are therefore subject
to the feasible range of the model.

To determine the optimal parameters for this plant an
optimization problem is defined, where the tracking error
and the applied actuator energy are used as objective
function. Here the numerical condition of the Hessian is
implemented as a nonlinear constraint for the optimization
problem, see (10c).

min
S1,S2,T1,T2

(Je,n + sc1Je,φ + sc2Ju,GFC + sc3Ju,WG)

(10a)

s.t. {S1, S2, T1, T2} > 0 (10b)

κ (H) ≤ κub (10c)

Je,n =
N∑

k=0

(
yk,n − yk,nref

)2
Je,φ =

N∑

k=0

(
yk,φ − yk,φref

)2

Ju,GFC =

N∑

k=0

(uk,GFC)
2

Ju,WG =

N∑

k=0

(uk,WG)
2

With the length N =
tref
Ts

according to the sampling time
Ts and the time length of the reference trajectory tref .
Notice that this optimization task is different to the MPC
formulation and can be seen as an overlying loop to provide
optimal parameters for the MPC in dependency of the
given input profile and objective function. The weighting
factors (scx) in (10a) are used to provide appropriate
weightings for all four criteria. The value of the upper
bound κub should be set to a reasonable value – during
the tests the maximum allowed condition number was set
to κub = 100.

With this method alternative criteria like the numerical
condition can be incorporated in the tuning process. This
is motivated by the observation that in this application the
objective function, when only considering tracking error
and applied actuator energy, provides a similar value over
a wide range of parameter combinations. For example in
Fig. 2 both objective functions, whether with or without
considering κ (H), are compared 4 .

An alternative solution would be to directly consider
the condition number in the cost function, which was
tested too and essentially led to the same results. The
optimization problem (10a) is a nonlinear program (NLP)
which was solved by a sequential quadratic programming

4 Please note that due to the fact that there are four different
tuning parameters which cannot be visualized within one figure, the
presented objective functions were obtained by fixing the values for
T1 and T2 and varying S1 and S2. In addition it should be mentioned
that the cost function is only presented for the feasible parameter
range (10b).
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Fig. 2. Comparison between objective function with and
without considering the numerical condition

Table 1. Set of parameters obtained by self
tuning

S1 S2 T1 T2 κ (H)

Initial 1 1 1 1 4.9 105

Self tuning 0.117 8.11 103 51.5 1.03 102 100

method. This method approximates the NLP at every
major iteration step by a QP and updates an estimate
of the Hessian of the Lagrangian.

4.3 Algorithm

The tuning strategy can be summarized by the following
steps:

(1) Condensing: With the identified plant model the
condensing is performed to provide the QP.

(2) Closed loop representation: Based on the optimal
QP solution the closed loop system is transferred into
one state space representation.

(3) Parameter optimization: A time domain based
optimization is performed with a predefined evalu-
ation scenario considering the tracking performance
and control action as cost function and the numerical
condition as nonlinear constraint.

(4) Verification: The control performance is evaluated
for the linear plant.

5. RESULTS

The presented tuning algorithm was used to obtain the
parameters for the MPC, whereas the required initial pa-
rameters were set to 1. In Table 1 the initial values and the
gained parameters are listed and additionally the condition
number of H is given. The corresponding trajectories for
both parameter sets are depicted in Fig. 3. It can be
seen that the initial values provide an inferior performance
regarding the φ tracking but due to the optimization the
performance of the tracking was enhanced.

To evaluate the performance of the self tuning MPC a
(more detailed) nonlinear simulation model of a compres-
sor station was used, which was calibrated with measure-
ments from the real station. In addition in this simulation
environment also the available numerical accuracy of the
QP solver on the target system, discretization effects and
measurement noise are considered.
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−0.2

−0.1

0

0.1
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φ
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y
ref

y
initial

y
self tuning

Fig. 3. Result of self tuning at linear simulation model

Table 2. Comparison of control performance

Tuning Je,n Je,φ Ju,GFC Ju,WG κ (H)

On-site 100 % 100 % 100 % 100 % 7.4 105

Self tuning 78.2 % 94.8 % 100.1 % 100.1% 100

Based on the obtained self tuning parameters from Ta-
ble 1 a simulation on the described nonlinear model was
performed. As test scenario a representative load change
at t = 20 s and one setpoint change on each reference was
performed. To compare the performance of the parameters
obtained by the self tuning method the trajectories are
compared against a parameter set which was tuned on site
by an experienced control engineer. In Fig. 4 the resulting
trajectories are shown, where it can be seen that the
achievable performance is similar to the one with manual
tuning.

0 20 40 60 80 100 120 140 160 180 200
270

280

290

300

310

320

330

y
rp

m

0 20 40 60 80 100 120 140 160 180 200
0.48

0.5
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0.56

0.58

0.6

0.62

time in s

y
φ

 

 

Standard implementation

Self tuning result

Reference

Fig. 4. Output tracking with default implementation tuned
on-site and with the self tuning result

In Table 2 the cost functions for the integrated squared
tracking error and the used actuator energy are presented
– the relative values are scaled to the performance achieved
by on-site tuning. In the last column the condition number
of the Hessian is listed, where a major improvement com-
pared to the manual tuning can be obtained by the self
tuning strategy. It was possible to reduce the condition
of the Hessian from ≈ 105 to 102. The immediate con-
sequence of this reduction is summarized in Table 3 and
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Table 3. Comparison of needed QP iterations

max. No. iterations avg. No. iterations

On-site tuning 10 5,131

Self tuning 6 0.006

can also be seen in Fig. 5, where the number of necessary
iterations of the QP solver is depicted for the standard
and the self tuning case. Due to implementation reasons
on the real hardware system the maximum number of
allowed iterations was set to 10. As it can be seen the
number of iteration often approaches the allowed limit
when using the manual tuning parameters, whereas in
the self tuning case the QP often could be solved within
the first iteration. Only during the setpoint change more
iterations were required.
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Fig. 5. Necessary QP Iterations in standard case or with
self tuning

A reason for the high number of necessary iterations in
the standard case is, that due to the ill conditioning the
amplified roundoff errors prevent the QP from converging
to the solution. Indeed, when comparing the tracking
performance it seems that the obtained solution of the
QP-solver with the standard tuning is sufficient close. This
can be a benefit of the used homotopy path strategy in
qpOASES that provides a sequence of optimal solutions
along the homotopy path. So the solution at each iteration,
even if not enough time for the calculation of the optimal
solution is available, tends to the optimal solution of the
QP. Another reason for the increase of iterations could
be the fact that the used feedback information in the QP
(i.e. the state information provided by the Kalman filter)
contains measurement noise, which can affect the QP and
the optimal solution. However for both experiments a
Kalman filter with identical settings was used.

6. CONCLUSIONS AND FUTURE WORKS

Although the problem of limited available numerical pre-
cision is not that frequent it can become important on
embedded systems. In this work an important additional
tuning aspect, to consider the numerical condition, is
introduced. The application of the proposed self tuning
strategies obtained satisfactory results. It was possible
to achieve an equal control performance as a controller
which was tuned by an experienced control engineer during
a previous field test at the station, while the numerical

efficiency was improved distinctly. It should be also men-
tioned, that the proposed method is not limited to this
particular application and could be used for different MPC
problems in applications with restrictions in the available
numerical accuracy. The near future work will focus on an
implementation on the real engine to further evaluate the
proposed self tuning method.
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