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Abstract: This paper addresses the problem of how to coordinate the spatial motion of individual agents
in a multi-agent system in such a way that the distance between any two agents is maintained at a
constant value (but not stabilized) throughout the evolution of the system while simultaneously rotating
the formation of agents to a pre-set reference attitude. We propose a distributed control law based on
locally available information. The stability of the proposed control law is analyzed using Lyapunov
theory in the special case of three agents. The region of attraction is found to encompass the entire state-
space, save a single point. A generalization to the case of n agents is performed using the theory of rigid
graphs. The geometric underpinnings of these ideas are illustrated by simulation.
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1. INTRODUCTION

Cooperating autonomous agents always have the potential to
outperform the efforts of any single agent. Such teams of robots
are used in a great number of civilian and military applications
where the task performed range from routine surveillance to
hazardous work in high risk environments such as offshore
oil rigs or at remote locations, in outer space for example.
The problems thus encountered form an exciting area of study
within the fields of robotics and control theory. A fundamental
task is formation control, which can roughly be understood as
adjusting the relative position or pose between each agent while
allowing the group of agents to move as a whole.

In the last decade, formation control of systems with diverse
dynamics and various task requirements has been studied using
a number of different approaches to control design. Lin, Francis
and Maggiore (2005) investigated when a nonholonomic sys-
tem of agents with two position states and one orientation state
can converge to a given geometric formation. Egerstedt and Hu
(2001) used a leader-follower approach to design a control law
allowing a group of agents to reach a formation asymptotically.
Ji and Egerstedt (2007) addressed the connectedness issue in
the context of formation control. For an extensive literature
review, see Chen and Wang (2005). Problems closely related
to formation control are consensus, cooperative target tracking,
and path following, see Ren and Beard (2008).

There is a body of research on how to verify and maintain the
rigidity of a given structure using tools from graph theory, see
for example Whiteley (1997); Yu et al. (2007). A theoretical
framework for representing split, rejoin and reconfiguration
maneuvers for multi-vehicle formations using the theory of
rigid graphs is presented by Olfati-Saber and Murray (2002a).
They use this framework and the potential function method to
solve control problems of formation and reformation in a planar
setting (Olfati-Saber and Murray, 2002b). A closely related
work is Krick, Broucke and Francis (2008).

This work is partly supported by the Swedish Foundation for Strategic Research
(SFF) and the Swedish Research Council (VR).

The problem of how to maintain and change the attitude of an
already established formation by means of distributed control
has generally been given less focus than formation stabilization.
There are many possible applications. Picture three persons
moving a table together, or three fingers adjusting the orienta-
tion of a cup simultaneously. Cooperation in such tasks is both
crucial and difficult since any movement caused by one agent
will affect the others. If for example the object being carried
is rigid, the control should be designed to keep the relative
distances between each agent all the time, or else they risk
dropping or deforming the object. One way of accomplishing
this is by constraining the system of agents to move as a single
rigid body, i.e. to move in a fixed formation.

In this paper, we address the problem of how to coordinate
the spatial motion of each individual agent in a multi-agent
formation in such a way that all distances between agents
are maintained (not stabilized) at constant values throughout
the evolution of the system. The control aim is to rotate the
configuration of agents so that a preset reference attitude is
reached asymptotically. To do this in a efficient and robust
fashion, we require the control to be decentralized and based
on locally available information only. A control law based on
the geometry of the problem is proposed. The stability of the
proposed control is analyzed using Lyapunov theory in the case
of three agents, and a generalization to the case of n agents is
performed using the theory of rigid graphs.

The remaining sections of this paper are organized as follows:
a problem statement is given in � 2; the case of three agents
is considered in � 3, while the n agent case is studied in � 4;
results from simulations carried out in MATLAB are presented
in � 5 and conclusions are drawn in � 6.

2. PROBLEM STATEMENT

The purpose of this paper is to demonstrate that the agents of a
multi-agent system can move as a rigid body without relying on
any centralized control. We will only do this for a basic type of
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system on a kinematic level and therefore specify the dynamics
of each agent to consist of a single integrator

Pxi D ui ; i D 1; 2; � � � ; n; (1)
where xi 2 R3 is the position of the i th agent in an inertial
frame of reference.

Let the Euclidean metric
d.xi ; xj / D kxi � xjk

denote the distance between the i th and the j th agent. The rigid
body motion constraints can then be written as

d.xi ; xj / D ci;j ; 8i; j D 1; : : : ; n; (2)
where ci;j 2 RC are constants. The position of any agent in
an inertial frame of reference can be uniquely determined by
the distances between it and three other, non-collinear agents,
whose positions are known. Hence, a number of the n.n �

1/=2 constrains (2) are redundant. In fact, their number can be
reduced to 3n � 6 as will be detailed in � 4.1.

The configuration of agents should be rigid throughout the evo-
lution of the system whereby non-collinearity will be preserved.
Therefore, we choose three arbitrary non-collinear agents to act
as a kind of reference points. These agents are labeled 1; 2; and
3 for convenience.

The attitude of any rigid body as expressed in an inertial frame
of reference can be described using a rotation axis and a rotation
angle by Euler’s theorem. In our case, a vector that spans the
axis is given by the normal of the plane formed by agents 1; 2;
and 3. We will not consider the angle of rotation about that axis,
i.e. we only consider two of the three degrees of freedom that
compose the attitude of a rigid body. Let n 2 R3 be a unit vector
representing the reference attitude, and let Pn � R3 denote the
plane with normal n intersecting the origin. The formation has
reached the reference attitude when

.x1 � x2/ � .x2 � x3/

k.x1 � x2/ � .x2 � x3/k
D n: (3)

Equation (3) determines the attitude of the entire configuration
of agents, assuming the rigid body motion constraints are
maintained during the evolution of the system.

The problem we study is the design of a distributed control
law; i.e. how to specify the input signals (1) in terms of relative
information in a decentralized way such that (2) is not violated
by the control and (3) is fulfilled asymptotically. It is assumed
that all agents know the desired attitude n.

3. A SPECIAL CASE

We begin by analyzing the special case of a system with only
three agents. Specifying the position of three non-collinear
points on a rigid body uniquely determines the positions of any
other point on said body, given the distances between that point
and the three reference points. Hence, the extension to the n
agents case is easily done once the three agent case has been
solved assuming xi �xj can be sensed by any two agents i and
j , as is shown in � 4.1. In � 4.2 we further generalize the results
of this section to the case where some agents i and j are unable
to sense each other directly.

3.1 Motion Constraints

Let us design the control signals ui such that the distances
d.xi ; xj / are maintained at constant values throughout the
evolution of system (1). Define Ÿ; ˜; — 2 R3 by

Ÿ D x1 � x2; ˜ D x2 � x3; — D x3 � x1;

whereby the rigid body motion constraints may be rewritten as
Ÿ � Ÿ D c2

1;2; ˜ � ˜ D c2
2;3; — � — D c2

3;1: (4)
Note that the variable — is redundant since — D �.Ÿ C ˜/. Also
note that any function depending only on Ÿ and ˜ is a function
of relative information.

The constraints (4) are satisfied if the control of system (1)
satisfies

Ÿ � .u1 � u2/ D 0;

˜ � .u2 � u3/ D 0;

— � .u3 � u1/ D 0;

i.e. if the vector u D Œu
|

1; u
|

2; u
|

3�
|

2 R9 of input signals
belongs to the null space N .M/ of the matrix M 2 R3�9

defined by

M D

24 Ÿ
|

�Ÿ
|

0
|

0
|

˜
|

�˜
|

�—
|

0
|

—
|

35 : (5)

Note that u 2 N .M/ respects the constraints but it does not
enforce them, i.e. the equilibrium values ci;j of d.xi ; xj / are
stable under u but not asymptotically stable.

A matrix whose columns form a basis forN .M/ is B.Ÿ; ˜; —/ 2

R9�6 defined by

B.Ÿ; ˜; —/ D

"
I �S.Ÿ/ C S.—/
I S.Ÿ/ � S.˜/
I S.˜/ � S.—/

#
;

where S.�/ 2 R3�3 is the skew-symmetric matrix generated by
a vector a D Œa1; a2; a3�

|
2 R3 through setting

S.a/ D

"
0 �a3 a2

a3 0 �a1

�a2 a1 0

#
: (6)

Note that S.a/b, with b 2 R3, is an alternative notation for the
cross product a � b 2 R3. This implies, among other things,
that S.a/ is linear and a 2 N .S.a//. We state two well-known
properties of the cross product for future reference:

(i) (Signed volume) The factors of the scalar-valued triple
product a � .b � c/ with c 2 R3 may be reordered as
a � .b � c/ D c � .a � b/.

(ii) (bac-cab rule) The vector-valued triple product a�.b�c/
can be rewritten using dot products as a � .b � c/ D b.a �

c/ � c.a � b/.

Design

u D B.Ÿ; ˜; —/

�
v
w

�
D

"
v C .— � Ÿ/ � w
v C .Ÿ � ˜/ � w
v C .˜ � —/ � w

#
; (7)

where v ; w 2 R3 are new input signals representing the
translational and rotational velocities of the formation. Since
u 2 R.B/ D N .M/, the constraints (4) are satisfied for all
choices of v and w . Note that u1Cu2Cu3 D 3v , implying that
the centroid xc D .x1 C x2 C x3/=3 moves with translational
velocity v . Hence xc remains in a fixed position if v D 0,
i.e. xc is then the instantaneous center of zero velocity for the
configuration.

3.1.1 Remark. Each of the three agents is capable of implement-
ing its own control law (7) based on local measurements since
ui D v C Œ.xj �xi /C .xk �xi /��w (a formula that can easily
be obtained from (7)) is symmetric with respect to xj and xk ,
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i.e. the same ui is obtained no matter how agent i chooses to
label itself or j and k.

A straightforward calculation yields PŸ D 3w �Ÿ and P̃ D 3w �

˜. Introduce ¨ 2 R3 defined by ¨ D 3w for notational
convenience. The dynamics for Ÿ and ˜ may now be written
as

PŸ D ¨ � Ÿ; P̃ D ¨ � ˜: (8)
The dynamics (8) conserves distances, as indicated by the
following lemma.

3.1.2 Lemma. The norm of any quantity x 2 R3 governed by
the state equation Px D ¨ � x is constant in time.

Proof. Let X D
1
2
kxk2 and note that PX D x � Px D x � .¨ �

x/ D 0. �

Note that any vector like the x of Lemma 3.1.2 is constrained by
kxk being constant and hence only has two degrees on freedom.
The dynamics (8) therefore has three degrees of freedom (since
both Ÿ and ˜ are governed by the same ¨) and the system hence
evolves on a set that is equivalent to the rotation group SO.3/.

The constraints will be fulfilled for any choice of ¨. The
problem of how to design ¨ such that the agents perform
the desired collective behavior (3) will be considered in the
next section. Before proceeding, we note that the input signal
v cancels out of the dynamics (8) of Ÿ and ˜. The freedom
provided by v can be can be used to fix a position p relative
to x1; x2, and x3, through which the rotation axis passes. If
x1; x2, and x3 are linearly independent, they span R3 and any
p 2 R3 can be written as

p D

3X
iD1

�i xi

with �i 2 R. The rotation axis passes through p if Pp D q for
any constant q 2 R3, i.e. if

�1u1 C �2u2 C �3u3 D q: (9)
Note that q is the translational velocity of p and if for example
q D 0, then p remains in a fixed position during the evolution
of the system. Assuming �1 C �2 C �3 ¤ 0, we may solve (7)
and (9) for v to obtain

v D
q C Œ.�1 � �2/Ÿ C .�2 � �3/˜ C .�3 � �1/—� � ¨

�1 C �2 C �3

:

The values of �i , i.e. the value of p can be chosen arbitrarily.
For example, choosing �1 D �2 D �3 D 1 gives the centroid of
the triangle with corners in x1, x2, and x3 a pure translational
velocity of q=3. We return to and generalize this result in � 4.2.

3.2 Control Design and Stability Analysis

This section presents a control law ¨ based on relative infor-
mation that asymptotically drive the configuration of agents to
the reference attitude.

The current attitude of the formation can be represented by a
non-zero vector § and a rotation angle about that vector. Here,
we do not concern ourself with the rotation angle about § .
Rather, we focus on § defined as § D Ÿ �˜, i.e. as a normal to
the plane P§ containing Ÿ, ˜ and the origin. The states Ÿ and ˜
can be driven to the reference plane by rotating them about the
line of intersection between Pn and P§ .

The input signal ¨ is designed as
¨ D ˛ l; (10)

where ˛ 2 RC is a scale factor and l 2 R3 is a vector that
spans the line L D Pn \ P§ . More specifically, l D § � n.
The resulting dynamics of Ÿ and ˜ are

PŸ D �˛ .n � Ÿ/§; (11)
P̃ D �˛ .n � ˜/§; (12)

as can easily be verified using the bac-cab rule for vector triple
products.

3.2.1 Remark. The three agents 1; 2, and 3 can calculate the
same value of § up to sign regardless of how they choose to
assign Ÿ, ˜, and — since § is the signed area of the parallelo-
gram formed by x1, x2, and x3. To remove the sign ambiguity,
we suggest a principle allowing the agents to identify agent
1, 2, and 3 amongst themselves. Impose an order by setting
kŸk < k˜k < k—k. � The sense of Ÿ is determined by requiring
that Ÿ point away from — towards ˜ in the triangle formed by
x1, x2, and x3. This order is invariant under the evolution of
the system since kŸk, k˜k, and k—k are constant. The senses of
˜ and — can then be inferred from Ÿ C — C ˜ D 0.

3.2.2 Proposition. If system (8) is controlled by ¨ as defined by
(10), then §=k§k will converge to n from any initial point on
the 2-sphere S2 except §.0/=k§.0/k D �n. Furthermore, the
rate of convergence is locally exponential.

Proof. The proof is done using Lyapunov theory and consists
of three steps. First, we prove that § belongs to the 2-sphere.
The bac-cab rule yields

P§ D PŸ � ˜ C Ÿ � P̃

D .¨ � Ÿ/ � ˜ C Ÿ � .¨ � ˜/

D .˜ � ¨/Ÿ � .Ÿ � ˜/¨ C .Ÿ � ˜/¨ � .Ÿ � ¨/˜

D .˜ � ¨/Ÿ � .Ÿ � ¨/˜ D ¨ � §;

whereby k§k is constant by Lemma 3.1.2.

Second, we introduce  D n � § D n � .Ÿ � ˜/ to denote the
signed volume of n, Ÿ, and ˜ and note that

P D n � P§ D n � .¨ � §/ D �¨ � .n � §/

D ¨ � l D ˛ klk2
(13)

by the properties of scalar triple products.

Third, we introduce the Lyapunov function candidate

V D
1

2

n �
§

k§k

2

D 1 �


k§k

with time derivative

PV D �
P

k§k
D �

˛ klk2

k§k

since k§k is constant. Moreover,
klk2

D .§ � n/ � .§ � n/ D �n � .§ � .§ � n//

D �n � .Œn � §�§ � k§k
2n/ D k§k

2
� 2

D .k§k C /.k§k � /

D .k§k C /k§kV

so that
PV D �˛ .k§k C /V:

� This approach can not be applied when the agents do form an isosceles or
equilateral triangle. In that case, we may for example assume that each agent
possess a unique identifier and that other agents can sense and establish some
order among the identifiers.
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Note that  is increasing by (13) since ˛ 2 RC and  �

�k§k by the Cauchy-Schwarz inequality. The inequality only
holds with equality if §.0/=k§.0/k D �n meaning that V is
exponentially stable for all §.0/=k§.0/k ¤ �n, and V ! 0
implies §=k§k ! n. �

3.2.3 Remark. Note that Theorem 3.2.2 implies that Ÿ and ˜
will converge to the plane Pn from any initial point since if
§.0/=k§.0/k D �n, then n � Ÿ D n � ˜ D 0. This also shows
that Pn is an invariant set of (11) and (12).

4. THE GENERAL CASE

In this section, we extend the results obtained in � 3 for the case
of three agents to the general case of n agents. The variables
v , w , ¨ and § are redefined here but have interpretations
corresponding to those in the three agent case of � 3.

4.1 Constraint Graph and Rigidity Matrix

Let us start with the constraints. A constraint graph G can be
used to represent the rigidity of the configuration of agents. The
vertex set V D f1; : : : ; ng of G is in one-to-one correspondence
with the set of agents and the edge set E D f.i; j / 2 V �V g of
G contains pairs of vertices corresponding to pairs of agents
that should be maintained at a constant distance from each
other. The graph G does not necessarily have to be complete
since a number of the constraints are redundant in the sense
of being implied by the rest. The constraint graph is therefore
non-unique in general.

We will use the theory of rigid and flexible frameworks to
describe the requirement that the every distance between any
two agents should be maintained at a constant level as the
configuration of agents moves in R3. A useful concept is the
rigidity matrix (Tay and Whiteley, 1985; Whiteley, 1997). For
a configuration of n agents in R3 with constraint graph G, the
rigidity matrix R is the Jacobian matrix formed by the time
derivatives of the distance constraints in E

.xi � xj / � .Pxi � Pxj / D 0; .i; j / 2 E: (14)
That is R.G/ is the jEj � 3n matrix whose every row is of the
form

Œ 0 : : : 0 .xi � xj /
|

0 : : : 0 .xj � xi /
|

0 : : : 0 �

and corresponds to an edge .i; j / 2 E, where .xi � xj /
|

2 R3

is a row vector located in the three columns corresponding to
vertex i . The previous M matrix (5) is an example of a rigid
matrix representing a triangle. A standard result is that if no
set of three or more points are collinear, then the configuration
with constraint graph G is rigid if and only if R has rank 3n�6,
which also is the maximum rank of R (Tay and Whiteley, 1985;
Whiteley, 1997). Therefore, the number of edges in E should
be at least 3n � 6, and any number greater than 3n � 6 would
imply that some constraints are redundant.

It is clear that rigidity can be obtained by only preserving 3n�6
distance constraints if there are three non-collinear agents, since
the position of one agent can be uniquely determined by the
distance from three other non-collinear agents. For example,
assume agents 1; 2, and 3 are non-collinear and that their
relative distances are fixed. Add the remaining agents one at a
time, and assign each agent i to keep its distance with any three
non-collinear agents among the previously added 1; : : : ; i � 1
agents. The construction formed in this manner is rigid. The
number of constraints is 3 C 3.n � 3/ D 3n � 6.

The constraint graph for (2) is complete. But the above analysis
suggests that the number of constraints could be reduced to
3n�6. Assume that redundant constraints are discarded leaving
G with 3n � 6 edges such that the rigidity matrix R has full
rank. Let N .R/ denote the kernel or null space of R. By (14),
the control u D Œu

|

1; u
|

2; � � � ; u
|

n�
|

2 R3n should satisfy ui �

uj 2 N .R/ for all .i; j / 2 G in order to preserve the rigidity
during the evolution of the system. A matrix B 2 R3n�6 whose
columns form a basis for N .R/ is given by

B D

2664
I S.x1/
I S.x2/
:::

:::
I S.xm/

3775 ; (15)

where S.�/ is defined by (6).

Let xi;j D xi � xj 2 R3 denote the relative information.
Since the elements of the rigidity matrix R contain only relative
information xi;j , the basis for the null space of R can be
represented using relative information only. The expression for
such a basis depends on the form of R, i.e. of G. Let A 2 R3m�6

denote a matrix whose (i) first three columns form a block
matrix with 3 � 3 identity blocks, (ii) columns form a basis for
N .R/, and (iii) elements are all expressed in terms of relative
information. Since the columns of B form a basis forN .R/ for
all constraint graphs G, there exists a matrix T 2 R6�6 that
transform B into A, i.e. A D BT . The matrix T has full rank
and is of the form

T D

�
I �

0 �

�
: (16)

4.1.1 Example. Let us look at an example. Agents 1; 2, and
3 preserve the distance constraints with each other, and all
other agents keep their distance to agents 1; 2, and 3. Figure 1
provides an illustration for the case of n D 6. The constraint
graph G has 3n � 6 edges, and the rigidity matrix R 2

R.3n�6/�3n has the form of

R D

26664
M 0 0 � � � 0
M4 X4 0 � � � 0
M5 0 X5 � � � 0

:::
:::

:::
: : :

:::
Mn 0 0 � � � Xn

37775 ;

where M 2 R3�9 is defined by (5) and

Mi D

24x
|

1;i 0
|

0
|

0
|

x
|

2;i 0
|

0
|

0
|

x
|

3;i

35 ; Xi D

24x
|

i;1

x
|

i;2

x
|

i;3

35 ;

where Mi 2 R3�9 and Xi 2 R3�3.

1

23

45

6

Figure 1. A rigid constraint graph for a system of six agents.

The columns of B in (15) is a basis for N .R/. Another matrix
whose columns form a basis for N .R/ and whose elements
only contain relative information is
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A D

266666664

I S.x2;1 C x3;1/
I S.x1;2 C x3;2/
I S.x1;3 C x2;3/
I S.x1;4 C x2;4 C x3;4/
I S.x1;5 C x2;5 C x3;5/
:::

:::
I S.x1;n C x2;n C x3;n/

377777775
;

where S.�/ is defined by (6). The relation A D BT , where

T D

�
I S.x1 C x2 C x3/
0 � 3I

�
can easily be verified.

4.2 Control Design

In this section we will discuss the design of a control that makes
a set of vectors fxij 2 R3 j i; j 2 J g � P§ , where J is an
index set and P§ is a plane intersecting the origin (§ will be
defined later), converge to the reference plane Pn. The plane
P§ represents part of the attitude of the rigid structure formed
by the configuration of n agents.

Design the control u D Œu
|

1; u
|

2; � � � ; u
|

n�
| as

u D A

�
v
w

�
D B T

�
v
w

�
: (17)

where v ; w 2 R3 are new input signals. In fact, v represents
the translational velocity of the formation and w is related to
its angular velocity. Note that u is expressed in terms of A,
allowing agent i to calculate its own input signal

ui D
�
I S.xi /

�
T

�
v
w

�
; i � 4:

To see this the reader may compare ui in Example 4.1.1 with
u1, u2, and u3 in the context of Remark 3.1.1.

Introduce a new input signal ¨ 2 R3 as

¨ D �
�

0 I
�

T

�
v
w

�
:

Note that due to the form and non-singularity of T (see equation
(16)), ¨ is uniquely determined by w and vice versa. Then

Pxi;j D ui � uj

D
�
I S.xi /

�
T

�
v
w

�
�

�
I S.xj /

�
T

�
v
w

�
D

�
0 S.xi � xj /

�
T

�
v
w

�
D �S.xi � xj /¨ D ¨ � xi;j ;

wherefore the distances between agent i and j are preserved by
Lemma 3.1.2.

It remains to design ¨ so that the desired orientation is achieved
asymptotically. Note that each agent should be able to calculate
¨ from its own relative information, and that all agents should
arrive at the same result.

4.2.1 Theorem. If each agent has three non-collinear neighbors
on P§ (agents positioned on P§ need only two neighbors), then
an ¨ that rotates P§ into Pn can be designed based on the
relative information.

Proof. Design the control u as done in equation (17). It re-
mains to calculate ¨. Suppose agent i has three non-collinear
neighbors on P§ , whereby P§ is uniquely determined. Agent

i can then calculate a normal to P§ . Let § be such a normal
satisfying k§k D 1 and  D n � § > 0 (if  D 0, then apply u
with some arbitrary but pre-set ¨ for a pre-set period of time).
All agents calculate the same  due to the dot product being
invariant under coordinate changes. Morever,  is increasing
by the proof of Proposition 3.2.2 wherefore the sign of  does
not change during the evolution of the system. Hence, all agents
calculate the same § . If we set

¨ D ˛ § � n;

then ¨ is (i) identical for all i , (ii) based on relative information
and (iii) equal to a positive constant times the three agent case
input signal given by equation (10). Proposition 3.2.2 then
guarantees convergence. �

4.2.2 Remark. Note that by requiring  > 0 we impose a limit
on the feasible reference attitudes, making Theorem 4.2.1 a
more limited result than Proposition 3.2.2 in this respect. This
limitation could be removed by assuming the agents to have
some additional communication capabilities.

We also present an alternative approach to control design.

4.2.3 Proposition. Assume G is a tree. Consider a system of n
agents with constraint graph G. If the control satisfies

ui � uj D ¨ � xi;j 8 .i; j / 2 E; (18)
then all distance constraints (2) are preserved throughout the
evolution of the system.

Proof. For any i; j 2 f1; 2; : : : ; ng, there exists a path
i; i1; i2; � � � ; im; j such that each edge belongs to G, namely

f.i; i1/; .ik ; ikC1/; .im; j / 2 E j k D 1; � � � ; ng � E:

Therefore,
Pxi;j D ui � uj

D ui � ui1 C ui1 � ui2 C : : : C uim � uj

D ¨ � xi;i1 C ¨ � xi1;i2 C : : : C ¨ � xim;j

D ¨ � .xi;i1 C xi1;i2 C : : : C xim;j /

D ¨ � xi;j

is feasible and all distance constraints (2) are fulfilled through-
out the evolution of the system by Lemma 3.1.2. �

A tree composes a minimal set of edges connecting all vertices.
In the following, we therefore assume that G is a connected
graph and that u is given by (17), thereby satisfying Proposition
4.2.3.

A tree has n � 1 edges, so the number of equations in (18) is
n�1. Hence there is still some degree of freedom left to specify
in u. As done in � 3.1, in the three agents case, we can use this
degree of freedom to fix a location p through which the rotation
axis passes by setting

p D

nX
iD1

�i xi ; Pp D

nX
iD1

�i ui D q

for any constant q 2 R3 representing the translational velocity
of p if

Pn
iD1 �i ¤ 0. This degree of freedom should be used to

find a location for rotation that can be sensed by every agent.

4.2.4 Example. Let G be a star shaped tree with agent 1 as the
center (agent 1 may very well be an virtual agent corresponding
to a location that every other agent can sense as mentioned
above). An illustration for the case of n D 6 is provided in
Figure 2. According to Proposition 4.2.3, if the control satisfies

ui � u1 D ¨ � xi;1; 8i D 1; � � � ; n; (19)
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then the distances between agents will be maintained at con-
stant levels. Set u1 D 0 then ui D ¨ � xi;1, which is a simpler
control structure than that of (17). The design of ¨ can be done
as in Proposition 4.2.1.

1

23

45

6

Figure 2. A spanning tree for G in Example 1.

5. SIMULATION RESULTS

The behavior of the system is demonstrated by simulation in
MATLAB. The differential equations (11)–(12) for a system of
six coplanar agents with ui as in Theorem 4.2.1 are solved for
xi as functions of time using the built-in function ode45.

Figure 3 a, b and c display the results from a simulation of the
system given in Example 4.1.1 using the technique of setting
u1 D 0. All three images show the same trajectories, but
from different viewpoints. We set the number of agents to six,
requiring the agents to be able to sense each other as indicated
by the graph in Figure 1 and designing the control law (19)
from the rigidity graph in Figure 2. Agents 1, 2 and 3 form
an equilateral triangle so we have to assume that all agents
are able to distinguish between them, see Remark 3.2.1. We
can disregard the limitation discussed in Remark 4.2.2 since all
agents calculate ¨ using their relative position with regard to
the same three agents on P§ . The squares (�) in Figure 3 a, b,
c and d correspond to initial values while the circles (#) denote
final values. The formation can be visualized by drawing lines
between squares and circles in a ‘connect the dots’ fashion.

Figure 3 a and b show that the trajectory of each agent is
confined to a plane. The planes of different agents are parallel
with each other and with Pl, the plane through the origin whose
normal is l. This is natural since l spans the rotation axis of each
agent, and since l is constant in direction which is easily shown,

Pl D P§ � n D .¨ � §/ � n

D .n � ¨/§ � .n � §/¨ D �˛l:

Figure 3 c gives a three-dimensional view of the agents’ tra-
jectories. The initial and final attitude of the configuration of
agents are clearly distinguishable. Figure 3 d illustrates that the
trajectory of the normal is a geodesic on the 2-sphere.

6. CONCLUSIONS

The proposed control law rotates a formation of n agents in R3

allowing it to reach a pre-set reference attitude asymptotically.
The reference is limited to two of the three degrees of freedom
that the attitude of a rigid body has. If, for example, the for-
mation should consist of a convex polytope, then the reference
attitude limited to requiring that one of the two-dimensional
faces is parallel to a reference plane. A in-depth study of the
three agent case makes way for a straightforward generaliza-
tion to the n agents case, assuming the communication graph
has a spanning three and that any agent is able to sense at

least three other agents on the reference plane. Lyapunov based
stability analysis shows that a formation of three agents will
converge to the reference plane from any initial condition on the
2-sphere except for an unstable equilibrium point. Simulations
in MATLAB illustrates the geometric underpinnings of these
ideas.

(a) (b)

(c) (d)

Figure 3. Trajectories of six agents as seen from different viewpoints, a–c.
Trajectory of the normal on the 2-sphere, d. Squares (�) denote
initial positions, while circles (#) denote final positions.
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