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1. INTRODUCTION 

The parameterization of all controllers that stabilize a given 
plant, often called the Youla-Kučera parameterization, is a 
fundamental result of control theory. It launched an entirely 
new area of research and found application, among others, in 
optimal and robust control. 

In its original form, the result was obtained for finite- 
dimensional, linear time-invariant systems using transfer 
function methods, see Larin et al. (1971), Kučera (1975), 
Youla et al. (1976a, b), and Kučera (1979). It was then 
generalized to cover time-varying systems by e.g. Dale and 
Smith (1993), infinite dimensional systems by e.g. Desoer et 
al. (1980), Vidyasagar (1985), Quadrat (2003), and a class of 
non-linear systems by e.g. Hammer (1985), Paice and Moore 
(1990), and Anderson (1998). Quite naturally, a state-space 
representation of all stabilizing controllers was derived for 
finite dimensional, linear time-invariant systems; see Nett et 
al. (1984). Modern textbooks on the subject include Antsaklis 
and Michel (2006) and Colaneri et al. (1997). 

This paper presents a simple and insightful method to teach 
the parameterization result. It is intended for first-year 
graduate students in engineering. The transfer function result 
is derived first. A state-space representation of all stabilizing 
controllers then evolves from the transfer function result. 
Thus, the transfer functions and the state-space techniques are 
presented as connected approaches rather than isolated 
alternatives.   

2. TRANSFER FUNCTION APPROACH 

Stability is achieved by feedback. Consider systems S1 and S2 
connected in the feedback configuration shown in Fig. 1. The 
systems are assumed to be continuous-time, linear and time-
invariant. The case of discrete-time systems is analogous. 
Stability is taken to mean that the states of S1 and S2 go to 
zero from any initial condition as time increases. 

Given S1, the task is to determine all systems S2 so that the 
feedback system, S, is stable. Thus S1 is called the plant and 
S2 the stabilizing controller. For any given plant, the set of 

stabilizing controllers is either empty or infinite. Thus it is 
convenient to describe the set in parametric form. 

Suppose that the plant is described by state-space equations 
of the form 

DuCxyBuAxx +=+= ,  (1) 

or by the transfer function 
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The transfer function (2) is a proper rational matrix such that 
uHy ˆˆ 1=  holds, where uy ˆ,ˆ denotes the one-sided Laplace 

transforms of y, u. Here and below, the arguments of time 
functions as well as of their Laplace transforms are dropped, 
for the sake of brevity, when no ambiguity occurs. 

The special notation for the transfer function matrix that is 
introduced in (2) will be found useful when studying the 
relations between the state-space and the transfer-function 
descriptions. 

 
Fig. 1. Feedback system S. 

The feedback system S is required to be well posed, that is to 
say, described by state-space equations of the same form as 
S1 and S2 are. Then, the first observation is that the feedback 
system S is controllable from inputs r1 and r2 and observable 
from outputs y1 and y2 if and only if the constituent systems 
S1 and S2 are both controllable and observable. This can be 
seen from the eigenvalue criterion. As a consequence, 
stability of the feedback system can be studied using transfer 
functions. 
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The transfer function matrix, H, of the feedback system S that 
relates inputs r1, r2 and outputs y1, y2 is given by 
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where H1 and H2 are the transfer function matrices of S1 and 
S2, respectively. This can easily be obtained from the signal 
relationships in Fig. 1.  

Thus, suppose for the present that S1 and S2 are jointly 
controllable and observable. The feedback system S is seen to 
be well posed if and only if H(s) is proper (that is, analytic at 
s = ∞). Then the feedback system S is stable if and only if 
H(s) is stable (that is, analytic in Re s ≥ 0). 

2.1 Fractional Descriptions 

The set of stabilizing controllers for a given plant may 
contain controllers whose transfer function is not proper. In 
order to isolate only those with proper transfer functions, it is 
convenient to express the transfer function of the plant in the 
form of a proper and stable matrix fractional description. 

Thus, let 
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1
111 NDDNH −− ==  (4) 

where 11, ND  is a pair of right coprime, proper and stable ra-

tional matrices, while 11
~,~ ND is a pair of left coprime, proper 

and stable rational matrices.  

Similarly, for the controller, let 

,~~ 1
222
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where 22 , ND is a pair of left coprime, proper and stable ra-

tional matrices, while 22
~,~ ND is a pair of right coprime, proper 

and stable rational matrices. 

Then the closed-loop system transfer function H is proper and 
stable if and only if 

UNNDD =− 1212  (6) 

or 

,~~~~~
2121 UNNDD =−  (7) 

where U and U~ are unimodular proper and stable rational 
matrices, that is, proper and stable rational matrices whose 
inverses exist and are proper and stable rational. 

To prove this result, consider (6) first. It follows that  
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Thus, in view of (3), 
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Since 11, ND are right coprime and 22 , ND left coprime, H is 

seen to be proper and stable if and only if 1−U is proper and 
stable. 

Now consider (7). It follows that 
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Thus, in view of (3), 
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Since 22
~,~ ND are right coprime and 11

~,~ ND left coprime, H is 

seen to be proper and stable if and only if 1~−U is proper and 
stable. This completes the proof of conditions (6) and (7) for 
closed-loop stability in terms of fractional descriptions. 

2.2 Bézout Identity 

The proper and stable rational matrices 11, ND  being right 
coprime, there exist two other proper and stable rational 
matrices 11, YX  such that 

.1111 INYDX =+  (8) 

The proper and stable rational matrices 11
~,~ ND  being left 

coprime, there exist two other proper and stable rational 
matrices 11

~,~ YX such that  

.~~~~
1111 IYNXD =+  (9) 

It follows from (4) that 

.0~~
1111 =− DNND  (10) 

Finally, the matrices 11, YX and 11
~,~ YX  can be selected in such 

a way as to satisfy 

.0~~
1111 =− XYYX  (11) 

Indeed, if 0~~
1111 ≠=′−′ QXYYX for some pair 11

~,~ YX ′′ that satis-

fies (9), then the pair ,~~
111 QNXX +′= QDYY 111

~~
−′=  will 

satisfy both (9) and (11). Collecting identities (8), (9), (10), 
and (11), one obtains the matrix Bézout identity 
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2.3 Parameterization of Stabilizing Controllers 

Note that (12) defines one stabilizing controller, namely 
.~~ 1

111
1

12
−− −=−= XYYXH  

Any and all controllers having proper transfer function, with 
the property that the feedback system S is well posed and 
stable, are now provided in parametric form. 

Theorem. Let 1
1

1
1

111
~~ NDDNH −− == be coprime, proper and 

stable matrix fractional descriptions. Let 11,YX  and 11
~,~ YX   be 

proper and stable rational matrices that satisfy the Bézout 
identity (12). Then all proper H2 that render the closed-loop 
feedback system well posed and stable are given by  
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where the parameter, W, is a proper and stable rational matrix 
such that 1

11 )~( −+ NWX or 1
11 )~( −+ WNX exists and is proper. 

Proof. All proper stabilizing H2 are generated by all solutions 
of equation (6), written in the form 
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The solution set can be parameterized as  
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where W is an arbitrary proper and stable rational matrix. 
This follows by direct substitution and the use of (8), (10). 
Thus, in view of (5), all proper stabilizing H2 are given by 
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Alternatively, all proper stabilizing H2 are generated by all 
solutions of equation (7), written in the form 
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The solution set can be parameterized as 
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where W~ is an arbitrary proper and stable rational matrix. 
This follows by direct substitution and the use of (9), (10). 
Thus, in view of (5), all proper stabilizing H2 are given by 
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Now (11) implies WW ~
= and (13) holds. This completes the 

proof. 
3. STATE SPACE APPROACH 

The best way of presenting the Youla-Kučera parameteri-
zation in state space is to follow the three steps of the transfer 
function approach and translate each into the state-space 
parlance. This provides a connected result rather than two 
isolated alternatives. 

For the present, we assume that the plant S1 and the controller 
S2 are jointly controllable and observable. This proviso makes 
it possible to refer to the transfer function results. 

3.1 Fractional Description 

Given the state-space description (1) of the plant to be 
stabilized, we seek appropriate stable systems, each giving 
rise to a pair of transfer functions that defines the desired 
fractional description. This can be achieved by applying a 
stabilizing state feedback and a stabilizing output injection. 

To obtain a right fractional description for H1, consider any 
stabilizing state feedback u = Fx + r around the plant. The 
resulting equations 
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define a stable system with one input, r, and two outputs, u 
and y. Denote 
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the transfer function between r and u and denote 









+
+

=
DDFC
BBFA

N :1  

the transfer function between r and y. Then D1 and N1 are 
proper and stable rational matrices and it holds  

.ˆˆ,ˆˆ 11 rDurNy ==  (14) 

It follows that 

uHuDNy ˆˆˆ 1
1

11 == −  

so that 11, ND is a right matrix fractional description for H1. 

To obtain a left fractional description for H1, consider the 
dual situation, namely a state observer for the plant based on 
any stabilizing output injection Ke, where )ˆ( DuxCye +−=  
is the difference between the actual output and the estimated 
output. The resulting equations 
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define a stable system with two inputs, u and y, and one 
output, e. Denote 
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the transfer function between u and  – e. Then 1
~D  and 1

~N  are 
proper and stable rational matrices and it holds 
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0ˆ)~~(ˆ~ˆ~ˆ 111111 =−=−= rDNNDuNyDe  (15) 

because e is independent of r. It follows that 

1
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111
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1
~~ HDNND == −−  

so that 11
~,~ ND is a left matrix fractional description for H1. 

3.2 Bézout Identity 

The matrix fractional descriptions for the controller can be 
constructed in a like fashion. 

To obtain a right fractional description for H2, consider a 
stabilizing state feedback xFu ˆ=  around the observer with 
output y. The resulting equations 
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define a stable system with one input, e, and two outputs, u 
and y.  Denote 
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the transfer function between   e and  – u. Then 1
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proper and stable rational matrices and it holds   
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It follows that 
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so that 11
~,~ YX  is a right matrix fractional description for H2. 

To obtain a left fractional description for H2, consider a 
stabilizing state feedback rxFu += ˆ around the observer with 
output r. The resulting equations 
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define a stable system with two inputs, u and y, and one 
output, r.  Denote 









−

−−
=

IF
KDBKCA

X :1  (19) 

the transfer function between u and r and denote 









−
−

=
0

:1 F
KKCA

Y  (20) 

the transfer function between y and r. Then 1X and 1Y are 
proper and stable rational matrices and it holds 

0ˆ)~~(ˆˆˆ 111111 =−=+= eYXXYuXyYr  (21) 

as r is independent of e. It follows that 
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so that 11,YX  is a left matrix fractional description for H2. 

Collecting equations (14), (15), (18), and (21), one obtains in 
matrix form 
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Thus, the Bézout identity (12) holds 
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and each of the four fractional descriptions involved is 
actually coprime. 

3.3 Parameterization of Stabilizing Controllers 

Putting 0ˆ =r  in (22) and (23), it follows that 

1
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is one stabilizing controller for H1. Thus it is plausible that 
involving a parameter in generating r̂  one obtains all 
stabilizing controllers. Accordingly, we put  
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Then (22) implies that 
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while (23) implies that 
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Hence the parameterization formula (13) follows 
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This shows that the parameter W introduced in (25) does 
generate any and all stabilizing controllers. 

3.4 State-Space Representation of Stabilizing Controllers 

A state-space representation of the stabilizing controller (24), 
which corresponds to r = 0, is inferred from (16), (17) or 
(19), (20). It consists of an asymptotic state observer and a 
stabilizing state feedback from the estimated state. The entire 
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set of stabilizing controllers is then generated by putting r = 
We as follows, 
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where the parameter W is an arbitrary proper and stable 
rational matrix in the differential operator dtdq /:=  and is 
such that the feedback system is well posed. A state-space 
representation of all stabilizing controllers is shown in Fig. 2. 

 
Fig. 2. A state-space representation of all stabilizing 

controllers. 

Thus, every stabilizing controller can be viewed as a com-
bination of an asymptotic state observer and a stabilizing 
feedback from the estimated state, plus an additional system 
that depends on the parameter W. The order of any stabilizing 
controller is the order of the plant plus the order of a state-
space realization of W. Thus the set of stabilizing controllers 
contains controllers of arbitrarily high order.  

The initial assumption of controllability and observability for 
the plant and the controller can be relaxed. If the plant is 
uncontrollable and/or unobservable, then the closed-loop 
system has an uncontrollable and/or unobservable eigenvalue. 
Such an eigenvalue is invariant under state feedback and/or 
output injection. Thus, for all such eigenvalues to be stable, 
the plant must be stabilizable and detectable. This is a 
necessary and sufficient condition for the stabilization of a 
plant given by (1) using the feedback configuration of Fig. 1. 
It is to be noted that a stabilizing controller can also turn 
uncontrollable and/or unobservable provided it is jointly 
stabilizable and detectable. 

4. EXAMPLE 

Simple examples are most illustrative. Consider an integrator 
plant described by the equations ,, xyux == which corre-
spond to (1) with A = 0, B = 1, C = 1, and D = 0. The transfer 
function of the plant is .1)(1 ssH =  

Determine all stabilizing controllers with proper transfer 
function H2 using the transfer-function approach. Proper and 
stable fractional descriptions of H1 are provided, for example, 

by 
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where W is an arbitrary proper and stable rational function. 
Note that the indicated inverse exists and is proper for any 

.W  For example, 0=W implies .12 −=H  

Following the state-space approach, we first construct an 
asymptotic state observer 

)ˆ(ˆ xyKux −+=  (26) 

with an output injection gain K such that A – KC = – K is 
stable, hence K > 0. We then apply a stabilizing state 
feedback rxFu += ˆ with a gain F such that A + BF = F is 
stable, hence F < 0. We complete the design of all stabilizing 
controllers that have a proper transfer function by adding a 
term that depends on the parameter, W, as follows 

),ˆ)((ˆ xyqWxFu −+=  (27) 

where W is an arbitrary proper and stable rational function in 
the differential operator q. Note that the closed-loop system is 
well posed for any W. For example, W = 0 implies 
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The stabilizing controllers described by (26) – (27) are shown 
in Fig. 3. 

 
Fig. 3. The set of all controllers that stabilize an integrator. 

Any stabilizing controller in the set has order at least one. 
The McMillan degree of its transfer function may be lower, 
however, in case the controller is uncontrollable and/or 
unobservable. For example, the parameter 
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that is uncontrollable and unobservable, of McMillan degree 
zero. It corresponds to the controller effected by 0=W . 

On the other hand, if it is of interest to obtain the controller 
that corresponds to W = 0 in (25) by employing transfer 
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5. CONCLUSIONS 

The transfer function approach to determining all controllers 
with proper transfer function H2 that stabilize a given plant 
H1 consists of three steps: (i) determine coprime, proper and 
stable fractional descriptions for H1, (ii) solve a Bézout 
equation to obtain one stabilizing controller, and (iii) form 
the transfer functions H2 of all stabilizing controllers using a 
parameter that is a proper and stable rational matrix. 

The state space approach to determining all controllers S2 
with proper transfer function that stabilize a given plant S1 
consists of two steps: (i) obtain one stabilizing controller by 
constructing an asymptotic state observer for S1 and applying 
a stabilizing state feedback from the estimated state, and (ii) 
form all stabilizing controllers S2 by connecting to the initial 
controller a parameter that is a system with proper and stable 
rational transfer function. 

Thus, in the state space approach, there is no need to 
construct proper and stable fractional descriptions for the 
plant, or to solve the Bézout equation. The observer-based 

stabilizing controller is given directly by stabilizing gains F 
and K. A particular selection of F and K then corresponds to a 
choice of a particular proper and stable fractional description 
used in the transfer-function approach. 

The transfer function result is the result of reference and it is 
amenable to generalizations for time-varying, infinite-
dimensional, and nonlinear systems. The state space result is 
simple and useful in the design of control systems. 
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